Skip to content

Latest commit

 

History

History
316 lines (275 loc) · 8.45 KB

File metadata and controls

316 lines (275 loc) · 8.45 KB
comments difficulty edit_url rating source tags
true
Medium
1562
Weekly Contest 127 Q4
Stack
Tree
Binary Search Tree
Array
Binary Tree
Monotonic Stack

中文文档

Description

Given an array of integers preorder, which represents the preorder traversal of a BST (i.e., binary search tree), construct the tree and return its root.

It is guaranteed that there is always possible to find a binary search tree with the given requirements for the given test cases.

A binary search tree is a binary tree where for every node, any descendant of Node.left has a value strictly less than Node.val, and any descendant of Node.right has a value strictly greater than Node.val.

A preorder traversal of a binary tree displays the value of the node first, then traverses Node.left, then traverses Node.right.

 

Example 1:

Input: preorder = [8,5,1,7,10,12]
Output: [8,5,10,1,7,null,12]

Example 2:

Input: preorder = [1,3]
Output: [1,null,3]

 

Constraints:

  • 1 <= preorder.length <= 100
  • 1 <= preorder[i] <= 1000
  • All the values of preorder are unique.

Solutions

Solution 1

Python3

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def bstFromPreorder(self, preorder: List[int]) -> Optional[TreeNode]:
        def dfs(preorder):
            if not preorder:
                return None
            root = TreeNode(preorder[0])
            left, right = 1, len(preorder)
            while left < right:
                mid = (left + right) >> 1
                if preorder[mid] > preorder[0]:
                    right = mid
                else:
                    left = mid + 1
            root.left = dfs(preorder[1:left])
            root.right = dfs(preorder[left:])
            return root

        return dfs(preorder)

Java

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {

    public TreeNode bstFromPreorder(int[] preorder) {
        return dfs(preorder, 0, preorder.length - 1);
    }

    private TreeNode dfs(int[] preorder, int i, int j) {
        if (i > j || i >= preorder.length) {
            return null;
        }
        TreeNode root = new TreeNode(preorder[i]);
        int left = i + 1, right = j + 1;
        while (left < right) {
            int mid = (left + right) >> 1;
            if (preorder[mid] > preorder[i]) {
                right = mid;
            } else {
                left = mid + 1;
            }
        }
        root.left = dfs(preorder, i + 1, left - 1);
        root.right = dfs(preorder, left, j);
        return root;
    }
}

C++

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    TreeNode* bstFromPreorder(vector<int>& preorder) {
        return dfs(preorder, 0, preorder.size() - 1);
    }

    TreeNode* dfs(vector<int>& preorder, int i, int j) {
        if (i > j || i >= preorder.size()) return nullptr;
        TreeNode* root = new TreeNode(preorder[i]);
        int left = i + 1, right = j + 1;
        while (left < right) {
            int mid = (left + right) >> 1;
            if (preorder[mid] > preorder[i])
                right = mid;
            else
                left = mid + 1;
        }
        root->left = dfs(preorder, i + 1, left - 1);
        root->right = dfs(preorder, left, j);
        return root;
    }
};

Go

/**
 * Definition for a binary tree node.
 * type TreeNode struct {
 *     Val int
 *     Left *TreeNode
 *     Right *TreeNode
 * }
 */
func bstFromPreorder(preorder []int) *TreeNode {
	var dfs func(i, j int) *TreeNode
	dfs = func(i, j int) *TreeNode {
		if i > j || i >= len(preorder) {
			return nil
		}
		root := &TreeNode{Val: preorder[i]}
		left, right := i+1, len(preorder)
		for left < right {
			mid := (left + right) >> 1
			if preorder[mid] > preorder[i] {
				right = mid
			} else {
				left = mid + 1
			}
		}
		root.Left = dfs(i+1, left-1)
		root.Right = dfs(left, j)
		return root
	}
	return dfs(0, len(preorder)-1)
}

TypeScript

/**
 * Definition for a binary tree node.
 * class TreeNode {
 *     val: number
 *     left: TreeNode | null
 *     right: TreeNode | null
 *     constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
 *         this.val = (val===undefined ? 0 : val)
 *         this.left = (left===undefined ? null : left)
 *         this.right = (right===undefined ? null : right)
 *     }
 * }
 */

function bstFromPreorder(preorder: number[]): TreeNode | null {
    const n = preorder.length;
    const next = new Array(n);
    const stack = [];
    for (let i = n - 1; i >= 0; i--) {
        while (stack.length !== 0 && preorder[stack[stack.length - 1]] < preorder[i]) {
            stack.pop();
        }
        next[i] = stack[stack.length - 1] ?? n;
        stack.push(i);
    }

    const dfs = (left: number, right: number) => {
        if (left >= right) {
            return null;
        }
        return new TreeNode(preorder[left], dfs(left + 1, next[left]), dfs(next[left], right));
    };
    return dfs(0, n);
}

Rust

// Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
//   pub val: i32,
//   pub left: Option<Rc<RefCell<TreeNode>>>,
//   pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
//   #[inline]
//   pub fn new(val: i32) -> Self {
//     TreeNode {
//       val,
//       left: None,
//       right: None
//     }
//   }
// }
use std::cell::RefCell;
use std::rc::Rc;
impl Solution {
    fn dfs(
        preorder: &Vec<i32>,
        next: &Vec<usize>,
        left: usize,
        right: usize,
    ) -> Option<Rc<RefCell<TreeNode>>> {
        if left >= right {
            return None;
        }
        Some(Rc::new(RefCell::new(TreeNode {
            val: preorder[left],
            left: Self::dfs(preorder, next, left + 1, next[left]),
            right: Self::dfs(preorder, next, next[left], right),
        })))
    }

    pub fn bst_from_preorder(preorder: Vec<i32>) -> Option<Rc<RefCell<TreeNode>>> {
        let n = preorder.len();
        let mut stack = Vec::new();
        let mut next = vec![n; n];
        for i in (0..n).rev() {
            while !stack.is_empty() && preorder[*stack.last().unwrap()] < preorder[i] {
                stack.pop();
            }
            if !stack.is_empty() {
                next[i] = *stack.last().unwrap();
            }
            stack.push(i);
        }
        Self::dfs(&preorder, &next, 0, n)
    }
}