comments | difficulty | edit_url | rating | source | tags | ||
---|---|---|---|---|---|---|---|
true |
Medium |
1730 |
Weekly Contest 129 Q3 |
|
You are given an integer array values
where values[i] represents the value of the ith
sightseeing spot. Two sightseeing spots i
and j
have a distance j - i
between them.
The score of a pair (i < j
) of sightseeing spots is values[i] + values[j] + i - j
: the sum of the values of the sightseeing spots, minus the distance between them.
Return the maximum score of a pair of sightseeing spots.
Example 1:
Input: values = [8,1,5,2,6] Output: 11 Explanation: i = 0, j = 2, values[i] + values[j] + i - j = 8 + 5 + 0 - 2 = 11
Example 2:
Input: values = [1,2] Output: 2
Constraints:
2 <= values.length <= 5 * 104
1 <= values[i] <= 1000
We can enumerate
The time complexity is
class Solution:
def maxScoreSightseeingPair(self, values: List[int]) -> int:
ans = mx = 0
for j, x in enumerate(values):
ans = max(ans, mx + x - j)
mx = max(mx, x + j)
return ans
class Solution {
public int maxScoreSightseeingPair(int[] values) {
int ans = 0, mx = 0;
for (int j = 0; j < values.length; ++j) {
ans = Math.max(ans, mx + values[j] - j);
mx = Math.max(mx, values[j] + j);
}
return ans;
}
}
class Solution {
public:
int maxScoreSightseeingPair(vector<int>& values) {
int ans = 0, mx = 0;
for (int j = 0; j < values.size(); ++j) {
ans = max(ans, mx + values[j] - j);
mx = max(mx, values[j] + j);
}
return ans;
}
};
func maxScoreSightseeingPair(values []int) (ans int) {
mx := 0
for j, x := range values {
ans = max(ans, mx+x-j)
mx = max(mx, x+j)
}
return
}
function maxScoreSightseeingPair(values: number[]): number {
let [ans, mx] = [0, 0];
for (let j = 0; j < values.length; ++j) {
ans = Math.max(ans, mx + values[j] - j);
mx = Math.max(mx, values[j] + j);
}
return ans;
}
impl Solution {
pub fn max_score_sightseeing_pair(values: Vec<i32>) -> i32 {
let mut ans = 0;
let mut mx = 0;
for (j, &x) in values.iter().enumerate() {
ans = ans.max(mx + x - j as i32);
mx = mx.max(x + j as i32);
}
ans
}
}