Skip to content

Latest commit

 

History

History
175 lines (136 loc) · 4.65 KB

File metadata and controls

175 lines (136 loc) · 4.65 KB
comments difficulty edit_url rating source tags
true
Medium
1916
Weekly Contest 136 Q3
Array
Dynamic Programming

中文文档

Description

Given an integer array arr, partition the array into (contiguous) subarrays of length at most k. After partitioning, each subarray has their values changed to become the maximum value of that subarray.

Return the largest sum of the given array after partitioning. Test cases are generated so that the answer fits in a 32-bit integer.

 

Example 1:

Input: arr = [1,15,7,9,2,5,10], k = 3
Output: 84
Explanation: arr becomes [15,15,15,9,10,10,10]

Example 2:

Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4
Output: 83

Example 3:

Input: arr = [1], k = 1
Output: 1

 

Constraints:

  • 1 <= arr.length <= 500
  • 0 <= arr[i] <= 109
  • 1 <= k <= arr.length

Solutions

Solution 1: Dynamic Programming

We define $f[i]$ to represent the maximum element sum of the first $i$ elements of the array after separating them into several subarrays. At the beginning, $f[i]=0$, and the answer is $f[n]$.

We consider how to calculate $f[i]$, where $i \geq 1$.

For $f[i]$, its last element is $arr[i-1]$. Since the maximum length of each subarray is $k$, and we need to find the maximum value in the subarray, we can enumerate the first element $arr[j - 1]$ of the last subarray from right to left, where $\max(0, i - k) \lt j \leq i$, and maintain a variable $mx$ during the process to represent the maximum value in the subarray. The state transition equation is:

$$ f[i] = \max{f[i], f[j - 1] + mx \times (i - j + 1)} $$

The final answer is $f[n]$.

The time complexity is $O(n \times k)$, and the space complexity is $O(n)$, where $n$ is the length of the array $arr$.

Python3

class Solution:
    def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int:
        n = len(arr)
        f = [0] * (n + 1)
        for i in range(1, n + 1):
            mx = 0
            for j in range(i, max(0, i - k), -1):
                mx = max(mx, arr[j - 1])
                f[i] = max(f[i], f[j - 1] + mx * (i - j + 1))
        return f[n]

Java

class Solution {
    public int maxSumAfterPartitioning(int[] arr, int k) {
        int n = arr.length;
        int[] f = new int[n + 1];
        for (int i = 1; i <= n; ++i) {
            int mx = 0;
            for (int j = i; j > Math.max(0, i - k); --j) {
                mx = Math.max(mx, arr[j - 1]);
                f[i] = Math.max(f[i], f[j - 1] + mx * (i - j + 1));
            }
        }
        return f[n];
    }
}

C++

class Solution {
public:
    int maxSumAfterPartitioning(vector<int>& arr, int k) {
        int n = arr.size();
        int f[n + 1];
        memset(f, 0, sizeof(f));
        for (int i = 1; i <= n; ++i) {
            int mx = 0;
            for (int j = i; j > max(0, i - k); --j) {
                mx = max(mx, arr[j - 1]);
                f[i] = max(f[i], f[j - 1] + mx * (i - j + 1));
            }
        }
        return f[n];
    }
};

Go

func maxSumAfterPartitioning(arr []int, k int) int {
	n := len(arr)
	f := make([]int, n+1)
	for i := 1; i <= n; i++ {
		mx := 0
		for j := i; j > max(0, i-k); j-- {
			mx = max(mx, arr[j-1])
			f[i] = max(f[i], f[j-1]+mx*(i-j+1))
		}
	}
	return f[n]
}

TypeScript

function maxSumAfterPartitioning(arr: number[], k: number): number {
    const n: number = arr.length;
    const f: number[] = new Array(n + 1).fill(0);
    for (let i = 1; i <= n; ++i) {
        let mx: number = 0;
        for (let j = i; j > Math.max(0, i - k); --j) {
            mx = Math.max(mx, arr[j - 1]);
            f[i] = Math.max(f[i], f[j - 1] + mx * (i - j + 1));
        }
    }
    return f[n];
}