comments | difficulty | edit_url | rating | source | tags | ||
---|---|---|---|---|---|---|---|
true |
Medium |
1916 |
Weekly Contest 136 Q3 |
|
Given an integer array arr
, partition the array into (contiguous) subarrays of length at most k
. After partitioning, each subarray has their values changed to become the maximum value of that subarray.
Return the largest sum of the given array after partitioning. Test cases are generated so that the answer fits in a 32-bit integer.
Example 1:
Input: arr = [1,15,7,9,2,5,10], k = 3 Output: 84 Explanation: arr becomes [15,15,15,9,10,10,10]
Example 2:
Input: arr = [1,4,1,5,7,3,6,1,9,9,3], k = 4 Output: 83
Example 3:
Input: arr = [1], k = 1 Output: 1
Constraints:
1 <= arr.length <= 500
0 <= arr[i] <= 109
1 <= k <= arr.length
We define
We consider how to calculate
For
The final answer is
The time complexity is
class Solution:
def maxSumAfterPartitioning(self, arr: List[int], k: int) -> int:
n = len(arr)
f = [0] * (n + 1)
for i in range(1, n + 1):
mx = 0
for j in range(i, max(0, i - k), -1):
mx = max(mx, arr[j - 1])
f[i] = max(f[i], f[j - 1] + mx * (i - j + 1))
return f[n]
class Solution {
public int maxSumAfterPartitioning(int[] arr, int k) {
int n = arr.length;
int[] f = new int[n + 1];
for (int i = 1; i <= n; ++i) {
int mx = 0;
for (int j = i; j > Math.max(0, i - k); --j) {
mx = Math.max(mx, arr[j - 1]);
f[i] = Math.max(f[i], f[j - 1] + mx * (i - j + 1));
}
}
return f[n];
}
}
class Solution {
public:
int maxSumAfterPartitioning(vector<int>& arr, int k) {
int n = arr.size();
int f[n + 1];
memset(f, 0, sizeof(f));
for (int i = 1; i <= n; ++i) {
int mx = 0;
for (int j = i; j > max(0, i - k); --j) {
mx = max(mx, arr[j - 1]);
f[i] = max(f[i], f[j - 1] + mx * (i - j + 1));
}
}
return f[n];
}
};
func maxSumAfterPartitioning(arr []int, k int) int {
n := len(arr)
f := make([]int, n+1)
for i := 1; i <= n; i++ {
mx := 0
for j := i; j > max(0, i-k); j-- {
mx = max(mx, arr[j-1])
f[i] = max(f[i], f[j-1]+mx*(i-j+1))
}
}
return f[n]
}
function maxSumAfterPartitioning(arr: number[], k: number): number {
const n: number = arr.length;
const f: number[] = new Array(n + 1).fill(0);
for (let i = 1; i <= n; ++i) {
let mx: number = 0;
for (let j = i; j > Math.max(0, i - k); --j) {
mx = Math.max(mx, arr[j - 1]);
f[i] = Math.max(f[i], f[j - 1] + mx * (i - j + 1));
}
}
return f[n];
}