Skip to content

Latest commit

 

History

History
194 lines (159 loc) · 4.08 KB

File metadata and controls

194 lines (159 loc) · 4.08 KB
comments difficulty edit_url rating source tags
true
Medium
1740
Weekly Contest 140 Q2
Hash Table
String
Backtracking
Counting

中文文档

Description

You have n  tiles, where each tile has one letter tiles[i] printed on it.

Return the number of possible non-empty sequences of letters you can make using the letters printed on those tiles.

 

Example 1:

Input: tiles = "AAB"
Output: 8
Explanation: The possible sequences are "A", "B", "AA", "AB", "BA", "AAB", "ABA", "BAA".

Example 2:

Input: tiles = "AAABBC"
Output: 188

Example 3:

Input: tiles = "V"
Output: 1

 

Constraints:

  • 1 <= tiles.length <= 7
  • tiles consists of uppercase English letters.

Solutions

Solution 1

Python3

class Solution:
    def numTilePossibilities(self, tiles: str) -> int:
        def dfs(cnt: Counter) -> int:
            ans = 0
            for i, x in cnt.items():
                if x > 0:
                    ans += 1
                    cnt[i] -= 1
                    ans += dfs(cnt)
                    cnt[i] += 1
            return ans

        cnt = Counter(tiles)
        return dfs(cnt)

Java

class Solution {
    public int numTilePossibilities(String tiles) {
        int[] cnt = new int[26];
        for (char c : tiles.toCharArray()) {
            ++cnt[c - 'A'];
        }
        return dfs(cnt);
    }

    private int dfs(int[] cnt) {
        int res = 0;
        for (int i = 0; i < cnt.length; ++i) {
            if (cnt[i] > 0) {
                ++res;
                --cnt[i];
                res += dfs(cnt);
                ++cnt[i];
            }
        }
        return res;
    }
}

C++

class Solution {
public:
    int numTilePossibilities(string tiles) {
        int cnt[26]{};
        for (char c : tiles) {
            ++cnt[c - 'A'];
        }
        function<int(int* cnt)> dfs = [&](int* cnt) -> int {
            int res = 0;
            for (int i = 0; i < 26; ++i) {
                if (cnt[i] > 0) {
                    ++res;
                    --cnt[i];
                    res += dfs(cnt);
                    ++cnt[i];
                }
            }
            return res;
        };
        return dfs(cnt);
    }
};

Go

func numTilePossibilities(tiles string) int {
	cnt := [26]int{}
	for _, c := range tiles {
		cnt[c-'A']++
	}
	var dfs func(cnt [26]int) int
	dfs = func(cnt [26]int) (res int) {
		for i, x := range cnt {
			if x > 0 {
				res++
				cnt[i]--
				res += dfs(cnt)
				cnt[i]++
			}
		}
		return
	}
	return dfs(cnt)
}

TypeScript

function numTilePossibilities(tiles: string): number {
    const cnt: number[] = new Array(26).fill(0);
    for (const c of tiles) {
        ++cnt[c.charCodeAt(0) - 'A'.charCodeAt(0)];
    }
    const dfs = (cnt: number[]): number => {
        let res = 0;
        for (let i = 0; i < 26; ++i) {
            if (cnt[i] > 0) {
                ++res;
                --cnt[i];
                res += dfs(cnt);
                ++cnt[i];
            }
        }
        return res;
    };
    return dfs(cnt);
}