Skip to content

Latest commit

 

History

History
186 lines (148 loc) · 5.09 KB

File metadata and controls

186 lines (148 loc) · 5.09 KB
comments difficulty edit_url rating source tags
true
Medium
2059
Weekly Contest 146 Q4
Array
Math

中文文档

Description

Given two arrays of integers with equal lengths, return the maximum value of:

|arr1[i] - arr1[j]| + |arr2[i] - arr2[j]| + |i - j|

where the maximum is taken over all 0 <= i, j < arr1.length.

 

Example 1:

Input: arr1 = [1,2,3,4], arr2 = [-1,4,5,6]
Output: 13

Example 2:

Input: arr1 = [1,-2,-5,0,10], arr2 = [0,-2,-1,-7,-4]
Output: 20

 

Constraints:

  • 2 <= arr1.length == arr2.length <= 40000
  • -10^6 <= arr1[i], arr2[i] <= 10^6

Solutions

Solution 1: Mathematics + Enumeration

Let's denote $x_i = arr1[i]$, $y_i = arr2[i]$. Since the size relationship between $i$ and $j$ does not affect the value of the expression, we can assume $i \ge j$. Then the expression can be transformed into:

$$ | x_i - x_j | + | y_i - y_j | + i - j = \max \begin{cases} (x_i + y_i) - (x_j + y_j) \ (x_i - y_i) - (x_j - y_j) \ (-x_i + y_i) - (-x_j + y_j) \ (-x_i - y_i) - (-x_j - y_j) \end{cases} + i - j\\ = \max \begin{cases} (x_i + y_i + i) - (x_j + y_j + j) \ (x_i - y_i + i) - (x_j - y_j + j) \ (-x_i + y_i + i) - (-x_j + y_j + j) \ (-x_i - y_i + i) - (-x_j - y_j + j) \end{cases} $$

Therefore, we just need to find the maximum value $mx$ and the minimum value $mi$ of $a \times x_i + b \times y_i + i$, where $a, b \in {-1, 1}$. The answer is the maximum value among all $mx - mi$.

The time complexity is $O(n)$, where $n$ is the length of the array. The space complexity is $O(1)$.

Similar problems:

Python3

class Solution:
    def maxAbsValExpr(self, arr1: List[int], arr2: List[int]) -> int:
        dirs = (1, -1, -1, 1, 1)
        ans = -inf
        for a, b in pairwise(dirs):
            mx, mi = -inf, inf
            for i, (x, y) in enumerate(zip(arr1, arr2)):
                mx = max(mx, a * x + b * y + i)
                mi = min(mi, a * x + b * y + i)
                ans = max(ans, mx - mi)
        return ans

Java

class Solution {
    public int maxAbsValExpr(int[] arr1, int[] arr2) {
        int[] dirs = {1, -1, -1, 1, 1};
        final int inf = 1 << 30;
        int ans = -inf;
        int n = arr1.length;
        for (int k = 0; k < 4; ++k) {
            int a = dirs[k], b = dirs[k + 1];
            int mx = -inf, mi = inf;
            for (int i = 0; i < n; ++i) {
                mx = Math.max(mx, a * arr1[i] + b * arr2[i] + i);
                mi = Math.min(mi, a * arr1[i] + b * arr2[i] + i);
                ans = Math.max(ans, mx - mi);
            }
        }
        return ans;
    }
}

C++

class Solution {
public:
    int maxAbsValExpr(vector<int>& arr1, vector<int>& arr2) {
        int dirs[5] = {1, -1, -1, 1, 1};
        const int inf = 1 << 30;
        int ans = -inf;
        int n = arr1.size();
        for (int k = 0; k < 4; ++k) {
            int a = dirs[k], b = dirs[k + 1];
            int mx = -inf, mi = inf;
            for (int i = 0; i < n; ++i) {
                mx = max(mx, a * arr1[i] + b * arr2[i] + i);
                mi = min(mi, a * arr1[i] + b * arr2[i] + i);
                ans = max(ans, mx - mi);
            }
        }
        return ans;
    }
};

Go

func maxAbsValExpr(arr1 []int, arr2 []int) int {
	dirs := [5]int{1, -1, -1, 1, 1}
	const inf = 1 << 30
	ans := -inf
	for k := 0; k < 4; k++ {
		a, b := dirs[k], dirs[k+1]
		mx, mi := -inf, inf
		for i, x := range arr1 {
			y := arr2[i]
			mx = max(mx, a*x+b*y+i)
			mi = min(mi, a*x+b*y+i)
			ans = max(ans, mx-mi)
		}
	}
	return ans
}

TypeScript

function maxAbsValExpr(arr1: number[], arr2: number[]): number {
    const dirs = [1, -1, -1, 1, 1];
    const inf = 1 << 30;
    let ans = -inf;
    for (let k = 0; k < 4; ++k) {
        const [a, b] = [dirs[k], dirs[k + 1]];
        let mx = -inf;
        let mi = inf;
        for (let i = 0; i < arr1.length; ++i) {
            const [x, y] = [arr1[i], arr2[i]];
            mx = Math.max(mx, a * x + b * y + i);
            mi = Math.min(mi, a * x + b * y + i);
            ans = Math.max(ans, mx - mi);
        }
    }
    return ans;
}