Skip to content

Latest commit

 

History

History
233 lines (195 loc) · 6.87 KB

File metadata and controls

233 lines (195 loc) · 6.87 KB
comments difficulty edit_url rating source tags
true
Medium
1431
Weekly Contest 151 Q2
Array
Hash Table
String
Binary Search
Sorting

中文文档

Description

Let the function f(s) be the frequency of the lexicographically smallest character in a non-empty string s. For example, if s = "dcce" then f(s) = 2 because the lexicographically smallest character is 'c', which has a frequency of 2.

You are given an array of strings words and another array of query strings queries. For each query queries[i], count the number of words in words such that f(queries[i]) < f(W) for each W in words.

Return an integer array answer, where each answer[i] is the answer to the ith query.

 

Example 1:

Input: queries = ["cbd"], words = ["zaaaz"]
Output: [1]
Explanation: On the first query we have f("cbd") = 1, f("zaaaz") = 3 so f("cbd") < f("zaaaz").

Example 2:

Input: queries = ["bbb","cc"], words = ["a","aa","aaa","aaaa"]
Output: [1,2]
Explanation: On the first query only f("bbb") < f("aaaa"). On the second query both f("aaa") and f("aaaa") are both > f("cc").

 

Constraints:

  • 1 <= queries.length <= 2000
  • 1 <= words.length <= 2000
  • 1 <= queries[i].length, words[i].length <= 10
  • queries[i][j], words[i][j] consist of lowercase English letters.

Solutions

Solution 1: Sorting + Binary Search

First, according to the problem description, we implement a function $f(s)$, which returns the frequency of the smallest letter in the string $s$ in lexicographical order.

Next, we calculate $f(w)$ for each string $w$ in $words$, sort them, and store them in an array $nums$.

Then, we traverse each string $q$ in $queries$, and binary search in $nums$ for the first position $i$ that is greater than $f(q)$. Then, the elements at index $i$ and after in $nums$ all satisfy $f(q) &lt; f(W)$, so the answer to the current query is $n - i$.

The time complexity is $O((n + q) \times M)$, and the space complexity is $O(n)$. Here, $n$ and $q$ are the lengths of the arrays $words$ and $queries$ respectively, and $M$ is the maximum length of the strings.

Python3

class Solution:
    def numSmallerByFrequency(self, queries: List[str], words: List[str]) -> List[int]:
        def f(s: str) -> int:
            cnt = Counter(s)
            return next(cnt[c] for c in ascii_lowercase if cnt[c])

        n = len(words)
        nums = sorted(f(w) for w in words)
        return [n - bisect_right(nums, f(q)) for q in queries]

Java

class Solution {
    public int[] numSmallerByFrequency(String[] queries, String[] words) {
        int n = words.length;
        int[] nums = new int[n];
        for (int i = 0; i < n; ++i) {
            nums[i] = f(words[i]);
        }
        Arrays.sort(nums);
        int m = queries.length;
        int[] ans = new int[m];
        for (int i = 0; i < m; ++i) {
            int x = f(queries[i]);
            int l = 0, r = n;
            while (l < r) {
                int mid = (l + r) >> 1;
                if (nums[mid] > x) {
                    r = mid;
                } else {
                    l = mid + 1;
                }
            }
            ans[i] = n - l;
        }
        return ans;
    }

    private int f(String s) {
        int[] cnt = new int[26];
        for (int i = 0; i < s.length(); ++i) {
            ++cnt[s.charAt(i) - 'a'];
        }
        for (int x : cnt) {
            if (x > 0) {
                return x;
            }
        }
        return 0;
    }
}

C++

class Solution {
public:
    vector<int> numSmallerByFrequency(vector<string>& queries, vector<string>& words) {
        auto f = [](string s) {
            int cnt[26] = {0};
            for (char c : s) {
                cnt[c - 'a']++;
            }
            for (int x : cnt) {
                if (x) {
                    return x;
                }
            }
            return 0;
        };
        int n = words.size();
        int nums[n];
        for (int i = 0; i < n; i++) {
            nums[i] = f(words[i]);
        }
        sort(nums, nums + n);
        vector<int> ans;
        for (auto& q : queries) {
            int x = f(q);
            ans.push_back(n - (upper_bound(nums, nums + n, x) - nums));
        }
        return ans;
    }
};

Go

func numSmallerByFrequency(queries []string, words []string) (ans []int) {
	f := func(s string) int {
		cnt := [26]int{}
		for _, c := range s {
			cnt[c-'a']++
		}
		for _, x := range cnt {
			if x > 0 {
				return x
			}
		}
		return 0
	}
	n := len(words)
	nums := make([]int, n)
	for i, w := range words {
		nums[i] = f(w)
	}
	sort.Ints(nums)
	for _, q := range queries {
		x := f(q)
		ans = append(ans, n-sort.SearchInts(nums, x+1))
	}
	return
}

TypeScript

function numSmallerByFrequency(queries: string[], words: string[]): number[] {
    const f = (s: string): number => {
        const cnt = new Array(26).fill(0);
        for (const c of s) {
            cnt[c.charCodeAt(0) - 'a'.charCodeAt(0)]++;
        }
        return cnt.find(x => x > 0);
    };
    const nums = words.map(f).sort((a, b) => a - b);
    const ans: number[] = [];
    for (const q of queries) {
        const x = f(q);
        let l = 0,
            r = nums.length;
        while (l < r) {
            const mid = (l + r) >> 1;
            if (nums[mid] > x) {
                r = mid;
            } else {
                l = mid + 1;
            }
        }
        ans.push(nums.length - l);
    }
    return ans;
}