Skip to content

Latest commit

 

History

History
323 lines (273 loc) · 8.56 KB

File metadata and controls

323 lines (273 loc) · 8.56 KB
comments difficulty edit_url rating source tags
true
Medium
1855
Weekly Contest 155 Q3
Depth-First Search
Breadth-First Search
Union Find
Array
Hash Table
String
Sorting

中文文档

Description

You are given a string s, and an array of pairs of indices in the string pairs where pairs[i] = [a, b] indicates 2 indices(0-indexed) of the string.

You can swap the characters at any pair of indices in the given pairs any number of times.

Return the lexicographically smallest string that s can be changed to after using the swaps.

 

Example 1:

Input: s = "dcab", pairs = [[0,3],[1,2]]
Output: "bacd"
Explaination: 
Swap s[0] and s[3], s = "bcad"
Swap s[1] and s[2], s = "bacd"

Example 2:

Input: s = "dcab", pairs = [[0,3],[1,2],[0,2]]
Output: "abcd"
Explaination: 
Swap s[0] and s[3], s = "bcad"
Swap s[0] and s[2], s = "acbd"
Swap s[1] and s[2], s = "abcd"

Example 3:

Input: s = "cba", pairs = [[0,1],[1,2]]
Output: "abc"
Explaination: 
Swap s[0] and s[1], s = "bca"
Swap s[1] and s[2], s = "bac"
Swap s[0] and s[1], s = "abc"

 

Constraints:

  • 1 <= s.length <= 10^5
  • 0 <= pairs.length <= 10^5
  • 0 <= pairs[i][0], pairs[i][1] < s.length
  • s only contains lower case English letters.

Solutions

Solution 1: Union-Find

We notice that the index pairs have transitivity, i.e., if $a$ and $b$ can be swapped, and $b$ and $c$ can be swapped, then $a$ and $c$ can also be swapped. Therefore, we can consider using a union-find data structure to maintain the connectivity of these index pairs, and sort the characters belonging to the same connected component in lexicographical order.

Finally, we traverse the string. For the character at the current position, we replace it with the smallest character in the connected component, then remove this character from the connected component, and continue to traverse the string.

The time complexity is $O(n \times \log n + m \times \alpha(m))$, and the space complexity is $O(n)$. Here, $n$ and $m$ are the length of the string and the number of index pairs, respectively, and $\alpha$ is the inverse Ackermann function.

Python3

class Solution:
    def smallestStringWithSwaps(self, s: str, pairs: List[List[int]]) -> str:
        def find(x: int) -> int:
            if p[x] != x:
                p[x] = find(p[x])
            return p[x]

        n = len(s)
        p = list(range(n))
        for a, b in pairs:
            p[find(a)] = find(b)
        d = defaultdict(list)
        for i, c in enumerate(s):
            d[find(i)].append(c)
        for i in d.keys():
            d[i].sort(reverse=True)
        return "".join(d[find(i)].pop() for i in range(n))

Java

class Solution {
    private int[] p;

    public String smallestStringWithSwaps(String s, List<List<Integer>> pairs) {
        int n = s.length();
        p = new int[n];
        List<Character>[] d = new List[n];
        for (int i = 0; i < n; ++i) {
            p[i] = i;
            d[i] = new ArrayList<>();
        }
        for (var pair : pairs) {
            int a = pair.get(0), b = pair.get(1);
            p[find(a)] = find(b);
        }
        char[] cs = s.toCharArray();
        for (int i = 0; i < n; ++i) {
            d[find(i)].add(cs[i]);
        }
        for (var e : d) {
            e.sort((a, b) -> b - a);
        }
        for (int i = 0; i < n; ++i) {
            var e = d[find(i)];
            cs[i] = e.remove(e.size() - 1);
        }
        return String.valueOf(cs);
    }

    private int find(int x) {
        if (p[x] != x) {
            p[x] = find(p[x]);
        }
        return p[x];
    }
}

C++

class Solution {
public:
    string smallestStringWithSwaps(string s, vector<vector<int>>& pairs) {
        int n = s.size();
        int p[n];
        iota(p, p + n, 0);
        vector<char> d[n];
        function<int(int)> find = [&](int x) -> int {
            if (p[x] != x) {
                p[x] = find(p[x]);
            }
            return p[x];
        };
        for (auto e : pairs) {
            int a = e[0], b = e[1];
            p[find(a)] = find(b);
        }
        for (int i = 0; i < n; ++i) {
            d[find(i)].push_back(s[i]);
        }
        for (auto& e : d) {
            sort(e.rbegin(), e.rend());
        }
        for (int i = 0; i < n; ++i) {
            auto& e = d[find(i)];
            s[i] = e.back();
            e.pop_back();
        }
        return s;
    }
};

Go

func smallestStringWithSwaps(s string, pairs [][]int) string {
	n := len(s)
	p := make([]int, n)
	d := make([][]byte, n)
	for i := range p {
		p[i] = i
	}
	var find func(int) int
	find = func(x int) int {
		if p[x] != x {
			p[x] = find(p[x])
		}
		return p[x]
	}
	for _, pair := range pairs {
		a, b := pair[0], pair[1]
		p[find(a)] = find(b)
	}
	cs := []byte(s)
	for i, c := range cs {
		j := find(i)
		d[j] = append(d[j], c)
	}
	for i := range d {
		sort.Slice(d[i], func(a, b int) bool { return d[i][a] > d[i][b] })
	}
	for i := range cs {
		j := find(i)
		cs[i] = d[j][len(d[j])-1]
		d[j] = d[j][:len(d[j])-1]
	}
	return string(cs)
}

TypeScript

function smallestStringWithSwaps(s: string, pairs: number[][]): string {
    const n = s.length;
    const p = new Array(n).fill(0).map((_, i) => i);
    const find = (x: number): number => {
        if (p[x] !== x) {
            p[x] = find(p[x]);
        }
        return p[x];
    };
    const d: string[][] = new Array(n).fill(0).map(() => []);
    for (const [a, b] of pairs) {
        p[find(a)] = find(b);
    }
    for (let i = 0; i < n; ++i) {
        d[find(i)].push(s[i]);
    }
    for (const e of d) {
        e.sort((a, b) => b.charCodeAt(0) - a.charCodeAt(0));
    }
    const ans: string[] = [];
    for (let i = 0; i < n; ++i) {
        ans.push(d[find(i)].pop()!);
    }
    return ans.join('');
}

Rust

impl Solution {
    #[allow(dead_code)]
    pub fn smallest_string_with_swaps(s: String, pairs: Vec<Vec<i32>>) -> String {
        let n = s.as_bytes().len();
        let s = s.as_bytes();
        let mut disjoint_set: Vec<usize> = vec![0; n];
        let mut str_vec: Vec<Vec<u8>> = vec![Vec::new(); n];
        let mut ret_str = String::new();

        // Initialize the disjoint set
        for i in 0..n {
            disjoint_set[i] = i;
        }

        // Union the pairs
        for pair in pairs {
            Self::union(pair[0] as usize, pair[1] as usize, &mut disjoint_set);
        }

        // Initialize the return vector
        for (i, c) in s.iter().enumerate() {
            let p_c = Self::find(i, &mut disjoint_set);
            str_vec[p_c].push(*c);
        }

        // Sort the return vector in reverse order
        for cur_vec in &mut str_vec {
            cur_vec.sort();
            cur_vec.reverse();
        }

        // Construct the return string
        for i in 0..n {
            let index = Self::find(i, &mut disjoint_set);
            ret_str.push(str_vec[index].last().unwrap().clone() as char);
            str_vec[index].pop();
        }

        ret_str
    }

    #[allow(dead_code)]
    fn find(x: usize, d_set: &mut Vec<usize>) -> usize {
        if d_set[x] != x {
            d_set[x] = Self::find(d_set[x], d_set);
        }
        d_set[x]
    }

    #[allow(dead_code)]
    fn union(x: usize, y: usize, d_set: &mut Vec<usize>) {
        let p_x = Self::find(x, d_set);
        let p_y = Self::find(y, d_set);
        d_set[p_x] = p_y;
    }
}