comments | difficulty | edit_url | rating | source | tags | ||
---|---|---|---|---|---|---|---|
true |
Medium |
1708 |
Biweekly Contest 23 Q3 |
|
You are given a circle represented as (radius, xCenter, yCenter)
and an axis-aligned rectangle represented as (x1, y1, x2, y2)
, where (x1, y1)
are the coordinates of the bottom-left corner, and (x2, y2)
are the coordinates of the top-right corner of the rectangle.
Return true
if the circle and rectangle are overlapped otherwise return false
. In other words, check if there is any point (xi, yi)
that belongs to the circle and the rectangle at the same time.
Example 1:
Input: radius = 1, xCenter = 0, yCenter = 0, x1 = 1, y1 = -1, x2 = 3, y2 = 1 Output: true Explanation: Circle and rectangle share the point (1,0).
Example 2:
Input: radius = 1, xCenter = 1, yCenter = 1, x1 = 1, y1 = -3, x2 = 2, y2 = -1 Output: false
Example 3:
Input: radius = 1, xCenter = 0, yCenter = 0, x1 = -1, y1 = 0, x2 = 0, y2 = 1 Output: true
Constraints:
1 <= radius <= 2000
-104 <= xCenter, yCenter <= 104
-104 <= x1 < x2 <= 104
-104 <= y1 < y2 <= 104
For a point
For points within the rectangle (including the boundary), their x-coordinates
Therefore, the problem is transformed into finding the minimum value of
For
- If
$x_1 \leq xCenter \leq x_2$ , then the minimum value of$|x - xCenter|$ is$0$ ; - If
$xCenter < x_1$ , then the minimum value of$|x - xCenter|$ is$x_1 - xCenter$ ; - If
$xCenter > x_2$ , then the minimum value of$|x - xCenter|$ is$xCenter - x_2$ .
Similarly, we can find the minimum value of
That is,
class Solution:
def checkOverlap(
self,
radius: int,
xCenter: int,
yCenter: int,
x1: int,
y1: int,
x2: int,
y2: int,
) -> bool:
def f(i: int, j: int, k: int) -> int:
if i <= k <= j:
return 0
return i - k if k < i else k - j
a = f(x1, x2, xCenter)
b = f(y1, y2, yCenter)
return a * a + b * b <= radius * radius
class Solution {
public boolean checkOverlap(
int radius, int xCenter, int yCenter, int x1, int y1, int x2, int y2) {
int a = f(x1, x2, xCenter);
int b = f(y1, y2, yCenter);
return a * a + b * b <= radius * radius;
}
private int f(int i, int j, int k) {
if (i <= k && k <= j) {
return 0;
}
return k < i ? i - k : k - j;
}
}
class Solution {
public:
bool checkOverlap(int radius, int xCenter, int yCenter, int x1, int y1, int x2, int y2) {
auto f = [](int i, int j, int k) -> int {
if (i <= k && k <= j) {
return 0;
}
return k < i ? i - k : k - j;
};
int a = f(x1, x2, xCenter);
int b = f(y1, y2, yCenter);
return a * a + b * b <= radius * radius;
}
};
func checkOverlap(radius int, xCenter int, yCenter int, x1 int, y1 int, x2 int, y2 int) bool {
f := func(i, j, k int) int {
if i <= k && k <= j {
return 0
}
if k < i {
return i - k
}
return k - j
}
a := f(x1, x2, xCenter)
b := f(y1, y2, yCenter)
return a*a+b*b <= radius*radius
}
function checkOverlap(
radius: number,
xCenter: number,
yCenter: number,
x1: number,
y1: number,
x2: number,
y2: number,
): boolean {
const f = (i: number, j: number, k: number) => {
if (i <= k && k <= j) {
return 0;
}
return k < i ? i - k : k - j;
};
const a = f(x1, x2, xCenter);
const b = f(y1, y2, yCenter);
return a * a + b * b <= radius * radius;
}