comments | difficulty | edit_url | rating | source | tags | ||
---|---|---|---|---|---|---|---|
true |
Hard |
2048 |
Weekly Contest 202 Q4 |
|
There are n
oranges in the kitchen and you decided to eat some of these oranges every day as follows:
- Eat one orange.
- If the number of remaining oranges
n
is divisible by2
then you can eatn / 2
oranges. - If the number of remaining oranges
n
is divisible by3
then you can eat2 * (n / 3)
oranges.
You can only choose one of the actions per day.
Given the integer n
, return the minimum number of days to eat n
oranges.
Example 1:
Input: n = 10 Output: 4 Explanation: You have 10 oranges. Day 1: Eat 1 orange, 10 - 1 = 9. Day 2: Eat 6 oranges, 9 - 2*(9/3) = 9 - 6 = 3. (Since 9 is divisible by 3) Day 3: Eat 2 oranges, 3 - 2*(3/3) = 3 - 2 = 1. Day 4: Eat the last orange 1 - 1 = 0. You need at least 4 days to eat the 10 oranges.
Example 2:
Input: n = 6 Output: 3 Explanation: You have 6 oranges. Day 1: Eat 3 oranges, 6 - 6/2 = 6 - 3 = 3. (Since 6 is divisible by 2). Day 2: Eat 2 oranges, 3 - 2*(3/3) = 3 - 2 = 1. (Since 3 is divisible by 3) Day 3: Eat the last orange 1 - 1 = 0. You need at least 3 days to eat the 6 oranges.
Constraints:
1 <= n <= 2 * 109
According to the problem description, for each
- Decrease
$n$ by$1$ ; - If
$n$ can be divided by$2$ , divide the value of$n$ by$2$ ; - If
$n$ can be divided by$3$ , divide the value of$n$ by$3$ .
Therefore, the problem is equivalent to finding the minimum number of days to reduce
We design a function
- If
$n < 2$ , return$n$ ; - Otherwise, we can first reduce
$n$ to a multiple of$2$ by$n \bmod 2$ operations of$1$ , and then perform operation$2$ to reduce$n$ to$n/2$ ; we can also first reduce$n$ to a multiple of$3$ by$n \bmod 3$ operations of$1$ , and then perform operation$3$ to reduce$n$ to$n/3$ . We choose the minimum of the above two ways, that is,$1 + \min(n \bmod 2 + dfs(n/2), n \bmod 3 + dfs(n/3))$ .
To avoid repeated calculations, we use the method of memoization search and store the calculated values of
The time complexity is
class Solution:
def minDays(self, n: int) -> int:
@cache
def dfs(n: int) -> int:
if n < 2:
return n
return 1 + min(n % 2 + dfs(n // 2), n % 3 + dfs(n // 3))
return dfs(n)
class Solution {
private Map<Integer, Integer> f = new HashMap<>();
public int minDays(int n) {
return dfs(n);
}
private int dfs(int n) {
if (n < 2) {
return n;
}
if (f.containsKey(n)) {
return f.get(n);
}
int res = 1 + Math.min(n % 2 + dfs(n / 2), n % 3 + dfs(n / 3));
f.put(n, res);
return res;
}
}
class Solution {
public:
unordered_map<int, int> f;
int minDays(int n) {
return dfs(n);
}
int dfs(int n) {
if (n < 2) {
return n;
}
if (f.count(n)) {
return f[n];
}
int res = 1 + min(n % 2 + dfs(n / 2), n % 3 + dfs(n / 3));
f[n] = res;
return res;
}
};
func minDays(n int) int {
f := map[int]int{0: 0, 1: 1}
var dfs func(int) int
dfs = func(n int) int {
if v, ok := f[n]; ok {
return v
}
res := 1 + min(n%2+dfs(n/2), n%3+dfs(n/3))
f[n] = res
return res
}
return dfs(n)
}
function minDays(n: number): number {
const f: Record<number, number> = {};
const dfs = (n: number): number => {
if (n < 2) {
return n;
}
if (f[n] !== undefined) {
return f[n];
}
f[n] = 1 + Math.min((n % 2) + dfs((n / 2) | 0), (n % 3) + dfs((n / 3) | 0));
return f[n];
};
return dfs(n);
}