comments | difficulty | edit_url | rating | source | tags | |||||
---|---|---|---|---|---|---|---|---|---|---|
true |
Medium |
1405 |
Weekly Contest 203 Q2 |
|
There are 3n
piles of coins of varying size, you and your friends will take piles of coins as follows:
- In each step, you will choose any
3
piles of coins (not necessarily consecutive). - Of your choice, Alice will pick the pile with the maximum number of coins.
- You will pick the next pile with the maximum number of coins.
- Your friend Bob will pick the last pile.
- Repeat until there are no more piles of coins.
Given an array of integers piles
where piles[i]
is the number of coins in the ith
pile.
Return the maximum number of coins that you can have.
Example 1:
Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal.
Example 2:
Input: piles = [2,4,5] Output: 4
Example 3:
Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18
Constraints:
3 <= piles.length <= 105
piles.length % 3 == 0
1 <= piles[i] <= 104
To maximize the number of coins we get, we can greedily let Bob take the smallest
The time complexity is
class Solution:
def maxCoins(self, piles: List[int]) -> int:
piles.sort()
return sum(piles[len(piles) // 3 :][::2])
class Solution {
public int maxCoins(int[] piles) {
Arrays.sort(piles);
int ans = 0;
for (int i = piles.length / 3; i < piles.length; i += 2) {
ans += piles[i];
}
return ans;
}
}
class Solution {
public:
int maxCoins(vector<int>& piles) {
ranges::sort(piles);
int ans = 0;
for (int i = piles.size() / 3; i < piles.size(); i += 2) {
ans += piles[i];
}
return ans;
}
};
func maxCoins(piles []int) (ans int) {
sort.Ints(piles)
for i := len(piles) / 3; i < len(piles); i += 2 {
ans += piles[i]
}
return
}
function maxCoins(piles: number[]): number {
piles.sort((a, b) => a - b);
let ans = 0;
for (let i = piles.length / 3; i < piles.length; i += 2) {
ans += piles[i];
}
return ans;
}
impl Solution {
pub fn max_coins(mut piles: Vec<i32>) -> i32 {
piles.sort();
let mut ans = 0;
for i in (piles.len() / 3..piles.len()).step_by(2) {
ans += piles[i];
}
ans
}
}
int compare(const void* a, const void* b) {
return (*(int*) a - *(int*) b);
}
int maxCoins(int* piles, int pilesSize) {
qsort(piles, pilesSize, sizeof(int), compare);
int ans = 0;
for (int i = pilesSize / 3; i < pilesSize; i += 2) {
ans += piles[i];
}
return ans;
}