Skip to content

Latest commit

 

History

History
171 lines (136 loc) · 4.91 KB

File metadata and controls

171 lines (136 loc) · 4.91 KB
comments difficulty edit_url rating source tags
true
Medium
1802
Weekly Contest 217 Q2
Stack
Greedy
Array
Monotonic Stack

中文文档

Description

Given an integer array nums and a positive integer k, return the most competitive subsequence of nums of size k.

An array's subsequence is a resulting sequence obtained by erasing some (possibly zero) elements from the array.

We define that a subsequence a is more competitive than a subsequence b (of the same length) if in the first position where a and b differ, subsequence a has a number less than the corresponding number in b. For example, [1,3,4] is more competitive than [1,3,5] because the first position they differ is at the final number, and 4 is less than 5.

 

Example 1:

Input: nums = [3,5,2,6], k = 2
Output: [2,6]
Explanation: Among the set of every possible subsequence: {[3,5], [3,2], [3,6], [5,2], [5,6], [2,6]}, [2,6] is the most competitive.

Example 2:

Input: nums = [2,4,3,3,5,4,9,6], k = 4
Output: [2,3,3,4]

 

Constraints:

  • 1 <= nums.length <= 105
  • 0 <= nums[i] <= 109
  • 1 <= k <= nums.length

Solutions

Solution 1: Stack

We traverse the array nums from left to right, maintaining a stack stk. During the traversal, if the current element nums[i] is less than the top element of the stack, and the number of elements in the stack plus $n-i$ is greater than $k$, then we pop the top element of the stack until the above condition is no longer satisfied. At this point, if the number of elements in the stack is less than $k$, then we push the current element into the stack.

After the traversal, the elements in the stack are the answer.

The time complexity is $O(n)$, and the space complexity is $O(k)$. Where $n$ is the length of the array nums.

Python3

class Solution:
    def mostCompetitive(self, nums: List[int], k: int) -> List[int]:
        stk = []
        n = len(nums)
        for i, v in enumerate(nums):
            while stk and stk[-1] > v and len(stk) + n - i > k:
                stk.pop()
            if len(stk) < k:
                stk.append(v)
        return stk

Java

class Solution {
    public int[] mostCompetitive(int[] nums, int k) {
        Deque<Integer> stk = new ArrayDeque<>();
        int n = nums.length;
        for (int i = 0; i < nums.length; ++i) {
            while (!stk.isEmpty() && stk.peek() > nums[i] && stk.size() + n - i > k) {
                stk.pop();
            }
            if (stk.size() < k) {
                stk.push(nums[i]);
            }
        }
        int[] ans = new int[stk.size()];
        for (int i = ans.length - 1; i >= 0; --i) {
            ans[i] = stk.pop();
        }
        return ans;
    }
}

C++

class Solution {
public:
    vector<int> mostCompetitive(vector<int>& nums, int k) {
        vector<int> stk;
        int n = nums.size();
        for (int i = 0; i < n; ++i) {
            while (stk.size() && stk.back() > nums[i] && stk.size() + n - i > k) {
                stk.pop_back();
            }
            if (stk.size() < k) {
                stk.push_back(nums[i]);
            }
        }
        return stk;
    }
};

Go

func mostCompetitive(nums []int, k int) []int {
	stk := []int{}
	n := len(nums)
	for i, v := range nums {
		for len(stk) > 0 && stk[len(stk)-1] > v && len(stk)+n-i > k {
			stk = stk[:len(stk)-1]
		}
		if len(stk) < k {
			stk = append(stk, v)
		}
	}
	return stk
}

TypeScript

function mostCompetitive(nums: number[], k: number): number[] {
    const stk: number[] = [];
    const n = nums.length;
    for (let i = 0; i < n; ++i) {
        while (stk.length && stk.at(-1)! > nums[i] && stk.length + n - i > k) {
            stk.pop();
        }
        if (stk.length < k) {
            stk.push(nums[i]);
        }
    }
    return stk;
}