comments | difficulty | edit_url | rating | source | tags | |||||
---|---|---|---|---|---|---|---|---|---|---|
true |
Hard |
2499 |
Biweekly Contest 44 Q4 |
|
You are given a 2D integer array, queries
. For each queries[i]
, where queries[i] = [ni, ki]
, find the number of different ways you can place positive integers into an array of size ni
such that the product of the integers is ki
. As the number of ways may be too large, the answer to the ith
query is the number of ways modulo 109 + 7
.
Return an integer array answer
where answer.length == queries.length
, and answer[i]
is the answer to the ith
query.
Example 1:
Input: queries = [[2,6],[5,1],[73,660]] Output: [4,1,50734910] Explanation: Each query is independent. [2,6]: There are 4 ways to fill an array of size 2 that multiply to 6: [1,6], [2,3], [3,2], [6,1]. [5,1]: There is 1 way to fill an array of size 5 that multiply to 1: [1,1,1,1,1]. [73,660]: There are 1050734917 ways to fill an array of size 73 that multiply to 660. 1050734917 modulo 109 + 7 = 50734910.
Example 2:
Input: queries = [[1,1],[2,2],[3,3],[4,4],[5,5]] Output: [1,2,3,10,5]
Constraints:
1 <= queries.length <= 104
1 <= ni, ki <= 104
We can perform prime factorization on
According to combinatorial mathematics, there are two cases when we put
If the box cannot be empty, the number of schemes is
If the box can be empty, we can add
Therefore, for each query
So, the problem is transformed into how to quickly calculate
The time complexity is
N = 10020
MOD = 10**9 + 7
f = [1] * N
g = [1] * N
p = defaultdict(list)
for i in range(1, N):
f[i] = f[i - 1] * i % MOD
g[i] = pow(f[i], MOD - 2, MOD)
x = i
j = 2
while j <= x // j:
if x % j == 0:
cnt = 0
while x % j == 0:
cnt += 1
x //= j
p[i].append(cnt)
j += 1
if x > 1:
p[i].append(1)
def comb(n, k):
return f[n] * g[k] * g[n - k] % MOD
class Solution:
def waysToFillArray(self, queries: List[List[int]]) -> List[int]:
ans = []
for n, k in queries:
t = 1
for x in p[k]:
t = t * comb(x + n - 1, n - 1) % MOD
ans.append(t)
return ans
class Solution {
private static final int N = 10020;
private static final int MOD = (int) 1e9 + 7;
private static final long[] F = new long[N];
private static final long[] G = new long[N];
private static final List<Integer>[] P = new List[N];
static {
F[0] = 1;
G[0] = 1;
Arrays.setAll(P, k -> new ArrayList<>());
for (int i = 1; i < N; ++i) {
F[i] = F[i - 1] * i % MOD;
G[i] = qmi(F[i], MOD - 2, MOD);
int x = i;
for (int j = 2; j <= x / j; ++j) {
if (x % j == 0) {
int cnt = 0;
while (x % j == 0) {
++cnt;
x /= j;
}
P[i].add(cnt);
}
}
if (x > 1) {
P[i].add(1);
}
}
}
public static long qmi(long a, long k, long p) {
long res = 1;
while (k != 0) {
if ((k & 1) == 1) {
res = res * a % p;
}
k >>= 1;
a = a * a % p;
}
return res;
}
public static long comb(int n, int k) {
return (F[n] * G[k] % MOD) * G[n - k] % MOD;
}
public int[] waysToFillArray(int[][] queries) {
int m = queries.length;
int[] ans = new int[m];
for (int i = 0; i < m; ++i) {
int n = queries[i][0], k = queries[i][1];
long t = 1;
for (int x : P[k]) {
t = t * comb(x + n - 1, n - 1) % MOD;
}
ans[i] = (int) t;
}
return ans;
}
}
int N = 10020;
int MOD = 1e9 + 7;
long f[10020];
long g[10020];
vector<int> p[10020];
long qmi(long a, long k, long p) {
long res = 1;
while (k != 0) {
if ((k & 1) == 1) {
res = res * a % p;
}
k >>= 1;
a = a * a % p;
}
return res;
}
int init = []() {
f[0] = 1;
g[0] = 1;
for (int i = 1; i < N; ++i) {
f[i] = f[i - 1] * i % MOD;
g[i] = qmi(f[i], MOD - 2, MOD);
int x = i;
for (int j = 2; j <= x / j; ++j) {
if (x % j == 0) {
int cnt = 0;
while (x % j == 0) {
++cnt;
x /= j;
}
p[i].push_back(cnt);
}
}
if (x > 1) {
p[i].push_back(1);
}
}
return 0;
}();
int comb(int n, int k) {
return (f[n] * g[k] % MOD) * g[n - k] % MOD;
}
class Solution {
public:
vector<int> waysToFillArray(vector<vector<int>>& queries) {
vector<int> ans;
for (auto& q : queries) {
int n = q[0], k = q[1];
long long t = 1;
for (int x : p[k]) {
t = t * comb(x + n - 1, n - 1) % MOD;
}
ans.push_back(t);
}
return ans;
}
};
const n = 1e4 + 20
const mod = 1e9 + 7
var f = make([]int, n)
var g = make([]int, n)
var p = make([][]int, n)
func qmi(a, k, p int) int {
res := 1
for k != 0 {
if k&1 == 1 {
res = res * a % p
}
k >>= 1
a = a * a % p
}
return res
}
func init() {
f[0], g[0] = 1, 1
for i := 1; i < n; i++ {
f[i] = f[i-1] * i % mod
g[i] = qmi(f[i], mod-2, mod)
x := i
for j := 2; j <= x/j; j++ {
if x%j == 0 {
cnt := 0
for x%j == 0 {
cnt++
x /= j
}
p[i] = append(p[i], cnt)
}
}
if x > 1 {
p[i] = append(p[i], 1)
}
}
}
func comb(n, k int) int {
return (f[n] * g[k] % mod) * g[n-k] % mod
}
func waysToFillArray(queries [][]int) (ans []int) {
for _, q := range queries {
n, k := q[0], q[1]
t := 1
for _, x := range p[k] {
t = t * comb(x+n-1, n-1) % mod
}
ans = append(ans, t)
}
return
}