Skip to content

Latest commit

 

History

History
178 lines (138 loc) · 4.52 KB

File metadata and controls

178 lines (138 loc) · 4.52 KB
comments difficulty edit_url tags
true
中等
数组
动态规划

English Version

题目描述

你有一个整数数组 nums。你只能将一个元素 nums[i] 替换为 nums[i] * nums[i]

返回替换后的最大子数组和。

 

示例 1:

输入:nums = [2,-1,-4,-3]
输出:17
解释:你可以把-4替换为16(-4*(-4)),使nums = [2,-1,16,-3]. 现在,最大子数组和为 2 + -1 + 16 = 17.

示例 2:

输入:nums = [1,-1,1,1,-1,-1,1]
输出:4
解释:你可以把第一个-1替换为1,使 nums = [1,1,1,1,-1,-1,1]. 现在,最大子数组和为 1 + 1 + 1 + 1 = 4.

 

提示:

  • 1 <= nums.length <= 105
  • -104 <= nums[i] <= 104

解法

方法一:动态规划

我们定义 $f[i]$ 表示以 $nums[i]$ 结尾,且没有进行替换的最大子数组和,另外定义 $g[i]$ 表示以 $nums[i]$ 结尾,且进行了替换的最大子数组和。那么有如下状态转移方程:

$$ \begin{aligned} f[i] &= \max(f[i - 1], 0) + nums[i] \\ g[i] &= \max(\max(f[i - 1], 0) + nums[i] \times nums[i], g[i - 1] + nums[i]) \end{aligned} $$

最终答案即为所有 $max(f[i], g[i])$ 的最大值。

由于 $f[i]$ 只与 $f[i - 1]$ 有关,因此我们可以只用两个变量来维护 $f[i]$$g[i]$ 的值,从而将空间复杂度降低到 $O(1)$

时间复杂度 $O(n)$,空间复杂度 $O(1)$。其中 $n$ 为数组 $nums$ 的长度。

Python3

class Solution:
    def maxSumAfterOperation(self, nums: List[int]) -> int:
        f = g = 0
        ans = -inf
        for x in nums:
            ff = max(f, 0) + x
            gg = max(max(f, 0) + x * x, g + x)
            f, g = ff, gg
            ans = max(ans, f, g)
        return ans

Java

class Solution {
    public int maxSumAfterOperation(int[] nums) {
        int f = 0, g = 0;
        int ans = Integer.MIN_VALUE;
        for (int x : nums) {
            int ff = Math.max(f, 0) + x;
            int gg = Math.max(Math.max(f, 0) + x * x, g + x);
            f = ff;
            g = gg;
            ans = Math.max(ans, Math.max(f, g));
        }
        return ans;
    }
}

C++

class Solution {
public:
    int maxSumAfterOperation(vector<int>& nums) {
        int f = 0, g = 0;
        int ans = INT_MIN;
        for (int x : nums) {
            int ff = max(f, 0) + x;
            int gg = max(max(f, 0) + x * x, g + x);
            f = ff;
            g = gg;
            ans = max({ans, f, g});
        }
        return ans;
    }
};

Go

func maxSumAfterOperation(nums []int) int {
	var f, g int
	ans := -(1 << 30)
	for _, x := range nums {
		ff := max(f, 0) + x
		gg := max(max(f, 0)+x*x, g+x)
		f, g = ff, gg
		ans = max(ans, max(f, g))
	}
	return ans
}

Rust

impl Solution {
    #[allow(dead_code)]
    pub fn max_sum_after_operation(nums: Vec<i32>) -> i32 {
        // Here f[i] represents the value of max sub-array that ends with nums[i] with no substitution
        let mut f = 0;
        // g[i] represents the case with exact one substitution
        let mut g = 0;
        let mut ret = 1 << 31;

        // Begin the actual dp process
        for e in &nums {
            // f[i] = MAX(f[i - 1], 0) + nums[i]
            let new_f = std::cmp::max(f, 0) + *e;
            // g[i] = MAX(MAX(f[i - 1], 0) + nums[i] * nums[i], g[i - 1] + nums[i])
            let new_g = std::cmp::max(std::cmp::max(f, 0) + *e * *e, g + *e);
            // Update f[i] & g[i]
            f = new_f;
            g = new_g;
            // Since we start at 0, update answer after updating f[i] & g[i]
            ret = std::cmp::max(ret, g);
        }

        ret
    }
}