comments | difficulty | edit_url | rating | source | tags | ||||
---|---|---|---|---|---|---|---|---|---|
true |
Medium |
1934 |
Weekly Contest 235 Q3 |
|
You are given two positive integer arrays nums1
and nums2
, both of length n
.
The absolute sum difference of arrays nums1
and nums2
is defined as the sum of |nums1[i] - nums2[i]|
for each 0 <= i < n
(0-indexed).
You can replace at most one element of nums1
with any other element in nums1
to minimize the absolute sum difference.
Return the minimum absolute sum difference after replacing at most one element in the array nums1
. Since the answer may be large, return it modulo 109 + 7
.
|x|
is defined as:
x
ifx >= 0
, or-x
ifx < 0
.
Example 1:
Input: nums1 = [1,7,5], nums2 = [2,3,5]
Output: 3
Explanation: There are two possible optimal solutions:
- Replace the second element with the first: [1,7,5] => [1,1,5], or
- Replace the second element with the third: [1,7,5] => [1,5,5].
Both will yield an absolute sum difference of |1-2| + (|1-3| or |5-3|) + |5-5| =
3.
Example 2:
Input: nums1 = [2,4,6,8,10], nums2 = [2,4,6,8,10] Output: 0 Explanation: nums1 is equal to nums2 so no replacement is needed. This will result in an absolute sum difference of 0.
Example 3:
Input: nums1 = [1,10,4,4,2,7], nums2 = [9,3,5,1,7,4]
Output: 20
Explanation: Replace the first element with the second: [1,10,4,4,2,7] => [10,10,4,4,2,7].
This yields an absolute sum difference of |10-9| + |10-3| + |4-5| + |4-1| + |2-7| + |7-4| = 20
Constraints:
n == nums1.length
n == nums2.length
1 <= n <= 105
1 <= nums1[i], nums2[i] <= 105
According to the problem, we can first calculate the absolute difference sum of nums1
and nums2
without any replacements, denoted as
Next, we enumerate each element nums1
, replacing it with the element closest to nums1
. Therefore, before the enumeration, we can make a copy of nums1
, resulting in the array nums
, and sort nums
. Then, we perform a binary search in nums
for the element closest to
Finally, we subtract
The time complexity is nums1
.
class Solution:
def minAbsoluteSumDiff(self, nums1: List[int], nums2: List[int]) -> int:
mod = 10**9 + 7
nums = sorted(nums1)
s = sum(abs(a - b) for a, b in zip(nums1, nums2)) % mod
mx = 0
for a, b in zip(nums1, nums2):
d1, d2 = abs(a - b), inf
i = bisect_left(nums, b)
if i < len(nums):
d2 = min(d2, abs(nums[i] - b))
if i:
d2 = min(d2, abs(nums[i - 1] - b))
mx = max(mx, d1 - d2)
return (s - mx + mod) % mod
class Solution {
public int minAbsoluteSumDiff(int[] nums1, int[] nums2) {
final int mod = (int) 1e9 + 7;
int[] nums = nums1.clone();
Arrays.sort(nums);
int s = 0, n = nums.length;
for (int i = 0; i < n; ++i) {
s = (s + Math.abs(nums1[i] - nums2[i])) % mod;
}
int mx = 0;
for (int i = 0; i < n; ++i) {
int d1 = Math.abs(nums1[i] - nums2[i]);
int d2 = 1 << 30;
int j = search(nums, nums2[i]);
if (j < n) {
d2 = Math.min(d2, Math.abs(nums[j] - nums2[i]));
}
if (j > 0) {
d2 = Math.min(d2, Math.abs(nums[j - 1] - nums2[i]));
}
mx = Math.max(mx, d1 - d2);
}
return (s - mx + mod) % mod;
}
private int search(int[] nums, int x) {
int left = 0, right = nums.length;
while (left < right) {
int mid = (left + right) >>> 1;
if (nums[mid] >= x) {
right = mid;
} else {
left = mid + 1;
}
}
return left;
}
}
class Solution {
public:
int minAbsoluteSumDiff(vector<int>& nums1, vector<int>& nums2) {
const int mod = 1e9 + 7;
vector<int> nums(nums1);
sort(nums.begin(), nums.end());
int s = 0, n = nums.size();
for (int i = 0; i < n; ++i) {
s = (s + abs(nums1[i] - nums2[i])) % mod;
}
int mx = 0;
for (int i = 0; i < n; ++i) {
int d1 = abs(nums1[i] - nums2[i]);
int d2 = 1 << 30;
int j = lower_bound(nums.begin(), nums.end(), nums2[i]) - nums.begin();
if (j < n) {
d2 = min(d2, abs(nums[j] - nums2[i]));
}
if (j) {
d2 = min(d2, abs(nums[j - 1] - nums2[i]));
}
mx = max(mx, d1 - d2);
}
return (s - mx + mod) % mod;
}
};
func minAbsoluteSumDiff(nums1 []int, nums2 []int) int {
n := len(nums1)
nums := make([]int, n)
copy(nums, nums1)
sort.Ints(nums)
s, mx := 0, 0
const mod int = 1e9 + 7
for i, a := range nums1 {
b := nums2[i]
s = (s + abs(a-b)) % mod
}
for i, a := range nums1 {
b := nums2[i]
d1, d2 := abs(a-b), 1<<30
j := sort.SearchInts(nums, b)
if j < n {
d2 = min(d2, abs(nums[j]-b))
}
if j > 0 {
d2 = min(d2, abs(nums[j-1]-b))
}
mx = max(mx, d1-d2)
}
return (s - mx + mod) % mod
}
func abs(x int) int {
if x < 0 {
return -x
}
return x
}
function minAbsoluteSumDiff(nums1: number[], nums2: number[]): number {
const mod = 10 ** 9 + 7;
const nums = [...nums1];
nums.sort((a, b) => a - b);
const n = nums.length;
let s = 0;
for (let i = 0; i < n; ++i) {
s = (s + Math.abs(nums1[i] - nums2[i])) % mod;
}
let mx = 0;
for (let i = 0; i < n; ++i) {
const d1 = Math.abs(nums1[i] - nums2[i]);
let d2 = 1 << 30;
let j = search(nums, nums2[i]);
if (j < n) {
d2 = Math.min(d2, Math.abs(nums[j] - nums2[i]));
}
if (j) {
d2 = Math.min(d2, Math.abs(nums[j - 1] - nums2[i]));
}
mx = Math.max(mx, d1 - d2);
}
return (s - mx + mod) % mod;
}
function search(nums: number[], x: number): number {
let left = 0;
let right = nums.length;
while (left < right) {
const mid = (left + right) >> 1;
if (nums[mid] >= x) {
right = mid;
} else {
left = mid + 1;
}
}
return left;
}
/**
* @param {number[]} nums1
* @param {number[]} nums2
* @return {number}
*/
var minAbsoluteSumDiff = function (nums1, nums2) {
const mod = 10 ** 9 + 7;
const nums = [...nums1];
nums.sort((a, b) => a - b);
const n = nums.length;
let s = 0;
for (let i = 0; i < n; ++i) {
s = (s + Math.abs(nums1[i] - nums2[i])) % mod;
}
let mx = 0;
for (let i = 0; i < n; ++i) {
const d1 = Math.abs(nums1[i] - nums2[i]);
let d2 = 1 << 30;
let j = search(nums, nums2[i]);
if (j < n) {
d2 = Math.min(d2, Math.abs(nums[j] - nums2[i]));
}
if (j) {
d2 = Math.min(d2, Math.abs(nums[j - 1] - nums2[i]));
}
mx = Math.max(mx, d1 - d2);
}
return (s - mx + mod) % mod;
};
function search(nums, x) {
let left = 0;
let right = nums.length;
while (left < right) {
const mid = (left + right) >> 1;
if (nums[mid] >= x) {
right = mid;
} else {
left = mid + 1;
}
}
return left;
}