Skip to content

Latest commit

 

History

History
259 lines (188 loc) · 5.65 KB

File metadata and controls

259 lines (188 loc) · 5.65 KB
comments difficulty edit_url rating source tags
true
Medium
1785
Biweekly Contest 55 Q3
Array
Dynamic Programming

中文文档

Description

The alternating sum of a 0-indexed array is defined as the sum of the elements at even indices minus the sum of the elements at odd indices.

    <li>For example, the alternating sum of <code>[4,2,5,3]</code> is <code>(4 + 5) - (2 + 3) = 4</code>.</li>
    

Given an array nums, return the maximum alternating sum of any subsequence of nums (after reindexing the elements of the subsequence).

A subsequence of an array is a new array generated from the original array by deleting some elements (possibly none) without changing the remaining elements' relative order. For example, [2,7,4] is a subsequence of [4,2,3,7,2,1,4] (the underlined elements), while [2,4,2] is not.

 

Example 1:

Input: nums = [4,2,5,3]

Output: 7

Explanation: It is optimal to choose the subsequence [4,2,5] with alternating sum (4 + 5) - 2 = 7.

Example 2:

Input: nums = [5,6,7,8]

Output: 8

Explanation: It is optimal to choose the subsequence [8] with alternating sum 8.

Example 3:

Input: nums = [6,2,1,2,4,5]

Output: 10

Explanation: It is optimal to choose the subsequence [6,1,5] with alternating sum (6 + 5) - 1 = 10.

 

Constraints:

    <li><code>1 &lt;= nums.length &lt;= 10<sup>5</sup></code></li>
    
    <li><code>1 &lt;= nums[i] &lt;= 10<sup>5</sup></code></li>
    

Solutions

Solution 1

Python3

class Solution:
    def maxAlternatingSum(self, nums: List[int]) -> int:
        n = len(nums)
        f = [0] * (n + 1)
        g = [0] * (n + 1)
        for i, x in enumerate(nums, 1):
            f[i] = max(g[i - 1] - x, f[i - 1])
            g[i] = max(f[i - 1] + x, g[i - 1])
        return max(f[n], g[n])

Java

class Solution {
    public long maxAlternatingSum(int[] nums) {
        int n = nums.length;
        long[] f = new long[n + 1];
        long[] g = new long[n + 1];
        for (int i = 1; i <= n; ++i) {
            f[i] = Math.max(g[i - 1] - nums[i - 1], f[i - 1]);
            g[i] = Math.max(f[i - 1] + nums[i - 1], g[i - 1]);
        }
        return Math.max(f[n], g[n]);
    }
}

C++

class Solution {
public:
    long long maxAlternatingSum(vector<int>& nums) {
        int n = nums.size();
        vector<long long> f(n + 1), g(n + 1);
        for (int i = 1; i <= n; ++i) {
            f[i] = max(g[i - 1] - nums[i - 1], f[i - 1]);
            g[i] = max(f[i - 1] + nums[i - 1], g[i - 1]);
        }
        return max(f[n], g[n]);
    }
};

Go

func maxAlternatingSum(nums []int) int64 {
	n := len(nums)
	f := make([]int, n+1)
	g := make([]int, n+1)
	for i, x := range nums {
		i++
		f[i] = max(g[i-1]-x, f[i-1])
		g[i] = max(f[i-1]+x, g[i-1])
	}
	return int64(max(f[n], g[n]))
}

TypeScript

function maxAlternatingSum(nums: number[]): number {
    const n = nums.length;
    const f: number[] = new Array(n + 1).fill(0);
    const g = f.slice();
    for (let i = 1; i <= n; ++i) {
        f[i] = Math.max(g[i - 1] + nums[i - 1], f[i - 1]);
        g[i] = Math.max(f[i - 1] - nums[i - 1], g[i - 1]);
    }
    return Math.max(f[n], g[n]);
}

Solution 2

Python3

class Solution:
    def maxAlternatingSum(self, nums: List[int]) -> int:
        f = g = 0
        for x in nums:
            f, g = max(g - x, f), max(f + x, g)
        return max(f, g)

Java

class Solution {
    public long maxAlternatingSum(int[] nums) {
        long f = 0, g = 0;
        for (int x : nums) {
            long ff = Math.max(g - x, f);
            long gg = Math.max(f + x, g);
            f = ff;
            g = gg;
        }
        return Math.max(f, g);
    }
}

C++

class Solution {
public:
    long long maxAlternatingSum(vector<int>& nums) {
        long long f = 0, g = 0;
        for (int& x : nums) {
            long ff = max(g - x, f), gg = max(f + x, g);
            f = ff, g = gg;
        }
        return max(f, g);
    }
};

Go

func maxAlternatingSum(nums []int) int64 {
	var f, g int
	for _, x := range nums {
		f, g = max(g-x, f), max(f+x, g)
	}
	return int64(max(f, g))
}

TypeScript

function maxAlternatingSum(nums: number[]): number {
    let [f, g] = [0, 0];
    for (const x of nums) {
        [f, g] = [Math.max(g - x, f), Math.max(f + x, g)];
    }
    return g;
}