comments | difficulty | edit_url | rating | source | tags | |||
---|---|---|---|---|---|---|---|---|
true |
Medium |
1418 |
Weekly Contest 253 Q2 |
|
You are given a 0-indexed integer array piles
, where piles[i]
represents the number of stones in the ith
pile, and an integer k
. You should apply the following operation exactly k
times:
- Choose any
piles[i]
and removefloor(piles[i] / 2)
stones from it.
Notice that you can apply the operation on the same pile more than once.
Return the minimum possible total number of stones remaining after applying the k
operations.
floor(x)
is the greatest integer that is smaller than or equal to x
(i.e., rounds x
down).
Example 1:
Input: piles = [5,4,9], k = 2 Output: 12 Explanation: Steps of a possible scenario are: - Apply the operation on pile 2. The resulting piles are [5,4,5]. - Apply the operation on pile 0. The resulting piles are [3,4,5]. The total number of stones in [3,4,5] is 12.
Example 2:
Input: piles = [4,3,6,7], k = 3 Output: 12 Explanation: Steps of a possible scenario are: - Apply the operation on pile 2. The resulting piles are [4,3,3,7]. - Apply the operation on pile 3. The resulting piles are [4,3,3,4]. - Apply the operation on pile 0. The resulting piles are [2,3,3,4]. The total number of stones in [2,3,3,4] is 12.
Constraints:
1 <= piles.length <= 105
1 <= piles[i] <= 104
1 <= k <= 105
According to the problem description, in order to minimize the total number of remaining stones, we need to remove as many stones as possible from the stone piles. Therefore, we should always choose the pile with the most stones for removal.
We create a priority queue (max heap)
Next, we perform
After performing
The time complexity is piles
.
class Solution:
def minStoneSum(self, piles: List[int], k: int) -> int:
pq = [-x for x in piles]
heapify(pq)
for _ in range(k):
heapreplace(pq, pq[0] // 2)
return -sum(pq)
class Solution {
public int minStoneSum(int[] piles, int k) {
PriorityQueue<Integer> pq = new PriorityQueue<>((a, b) -> b - a);
for (int x : piles) {
pq.offer(x);
}
while (k-- > 0) {
int x = pq.poll();
pq.offer(x - x / 2);
}
int ans = 0;
while (!pq.isEmpty()) {
ans += pq.poll();
}
return ans;
}
}
class Solution {
public:
int minStoneSum(vector<int>& piles, int k) {
priority_queue<int> pq;
for (int x : piles) {
pq.push(x);
}
while (k--) {
int x = pq.top();
pq.pop();
pq.push(x - x / 2);
}
int ans = 0;
while (!pq.empty()) {
ans += pq.top();
pq.pop();
}
return ans;
}
};
func minStoneSum(piles []int, k int) (ans int) {
pq := &hp{piles}
heap.Init(pq)
for ; k > 0; k-- {
x := pq.pop()
pq.push(x - x/2)
}
for pq.Len() > 0 {
ans += pq.pop()
}
return
}
type hp struct{ sort.IntSlice }
func (h hp) Less(i, j int) bool { return h.IntSlice[i] > h.IntSlice[j] }
func (h *hp) Push(v any) { h.IntSlice = append(h.IntSlice, v.(int)) }
func (h *hp) Pop() any {
a := h.IntSlice
v := a[len(a)-1]
h.IntSlice = a[:len(a)-1]
return v
}
func (h *hp) push(v int) { heap.Push(h, v) }
func (h *hp) pop() int { return heap.Pop(h).(int) }
function minStoneSum(piles: number[], k: number): number {
const pq = new MaxPriorityQueue();
for (const x of piles) {
pq.enqueue(x);
}
while (k--) {
pq.enqueue((pq.dequeue().element + 1) >> 1);
}
return pq.toArray().reduce((a, b) => a + b.element, 0);
}