comments | difficulty | edit_url | rating | source | tags | |||
---|---|---|---|---|---|---|---|---|
true |
Medium |
1966 |
Weekly Contest 254 Q3 |
|
You are given a positive integer p
. Consider an array nums
(1-indexed) that consists of the integers in the inclusive range [1, 2p - 1]
in their binary representations. You are allowed to do the following operation any number of times:
- Choose two elements
x
andy
fromnums
. - Choose a bit in
x
and swap it with its corresponding bit iny
. Corresponding bit refers to the bit that is in the same position in the other integer.
For example, if x = 1101
and y = 0011
, after swapping the 2nd
bit from the right, we have x = 1111
and y = 0001
.
Find the minimum non-zero product of nums
after performing the above operation any number of times. Return this product modulo 109 + 7
.
Note: The answer should be the minimum product before the modulo operation is done.
Example 1:
Input: p = 1 Output: 1 Explanation: nums = [1]. There is only one element, so the product equals that element.
Example 2:
Input: p = 2 Output: 6 Explanation: nums = [01, 10, 11]. Any swap would either make the product 0 or stay the same. Thus, the array product of 1 * 2 * 3 = 6 is already minimized.
Example 3:
Input: p = 3 Output: 1512 Explanation: nums = [001, 010, 011, 100, 101, 110, 111] - In the first operation we can swap the leftmost bit of the second and fifth elements. - The resulting array is [001, 110, 011, 100, 001, 110, 111]. - In the second operation we can swap the middle bit of the third and fourth elements. - The resulting array is [001, 110, 001, 110, 001, 110, 111]. The array product is 1 * 6 * 1 * 6 * 1 * 6 * 7 = 1512, which is the minimum possible product.
Constraints:
1 <= p <= 60
We notice that each operation does not change the sum of the elements. When the sum of the elements remains unchanged, to minimize the product, we should maximize the difference between the elements as much as possible.
Since the largest element is
For the other elements in
The time complexity is
class Solution:
def minNonZeroProduct(self, p: int) -> int:
mod = 10**9 + 7
return (2**p - 1) * pow(2**p - 2, 2 ** (p - 1) - 1, mod) % mod
class Solution {
public int minNonZeroProduct(int p) {
final int mod = (int) 1e9 + 7;
long a = ((1L << p) - 1) % mod;
long b = qpow(((1L << p) - 2) % mod, (1L << (p - 1)) - 1, mod);
return (int) (a * b % mod);
}
private long qpow(long a, long n, int mod) {
long ans = 1;
for (; n > 0; n >>= 1) {
if ((n & 1) == 1) {
ans = ans * a % mod;
}
a = a * a % mod;
}
return ans;
}
}
class Solution {
public:
int minNonZeroProduct(int p) {
using ll = long long;
const int mod = 1e9 + 7;
auto qpow = [](ll a, ll n) {
ll ans = 1;
for (; n; n >>= 1) {
if (n & 1) {
ans = ans * a % mod;
}
a = a * a % mod;
}
return ans;
};
ll a = ((1LL << p) - 1) % mod;
ll b = qpow(((1LL << p) - 2) % mod, (1L << (p - 1)) - 1);
return a * b % mod;
}
};
func minNonZeroProduct(p int) int {
const mod int = 1e9 + 7
qpow := func(a, n int) int {
ans := 1
for ; n > 0; n >>= 1 {
if n&1 == 1 {
ans = ans * a % mod
}
a = a * a % mod
}
return ans
}
a := ((1 << p) - 1) % mod
b := qpow(((1<<p)-2)%mod, (1<<(p-1))-1)
return a * b % mod
}
function minNonZeroProduct(p: number): number {
const mod = BigInt(1e9 + 7);
const qpow = (a: bigint, n: bigint): bigint => {
let ans = BigInt(1);
for (; n; n >>= BigInt(1)) {
if (n & BigInt(1)) {
ans = (ans * a) % mod;
}
a = (a * a) % mod;
}
return ans;
};
const a = (2n ** BigInt(p) - 1n) % mod;
const b = qpow((2n ** BigInt(p) - 2n) % mod, 2n ** (BigInt(p) - 1n) - 1n);
return Number((a * b) % mod);
}