Skip to content

Latest commit

 

History

History
318 lines (255 loc) · 8.09 KB

File metadata and controls

318 lines (255 loc) · 8.09 KB
comments difficulty edit_url rating source tags
true
Hard
2084
Biweekly Contest 61 Q4
Array
Hash Table
Binary Search
Sliding Window

中文文档

Description

You are given an integer array nums. In one operation, you can replace any element in nums with any integer.

nums is considered continuous if both of the following conditions are fulfilled:

  • All elements in nums are unique.
  • The difference between the maximum element and the minimum element in nums equals nums.length - 1.

For example, nums = [4, 2, 5, 3] is continuous, but nums = [1, 2, 3, 5, 6] is not continuous.

Return the minimum number of operations to make nums continuous.

 

Example 1:

Input: nums = [4,2,5,3]
Output: 0
Explanation: nums is already continuous.

Example 2:

Input: nums = [1,2,3,5,6]
Output: 1
Explanation: One possible solution is to change the last element to 4.
The resulting array is [1,2,3,5,4], which is continuous.

Example 3:

Input: nums = [1,10,100,1000]
Output: 3
Explanation: One possible solution is to:
- Change the second element to 2.
- Change the third element to 3.
- Change the fourth element to 4.
The resulting array is [1,2,3,4], which is continuous.

 

Constraints:

  • 1 <= nums.length <= 105
  • 1 <= nums[i] <= 109

Solutions

Solution 1: Sorting + Deduplication + Binary Search

First, we sort the array and remove duplicates.

Then, we traverse the array, enumerating the current element $nums[i]$ as the minimum value of the consecutive array. We use binary search to find the first position $j$ that is greater than $nums[i] + n - 1$. Then, $j-i$ is the length of the consecutive array when the current element is the minimum value. We update the answer, i.e., $ans = \min(ans, n - (j - i))$.

Finally, we return $ans$.

The time complexity is $O(n \times \log n)$, and the space complexity is $O(\log n)$. Here, $n$ is the length of the array.

Python3

class Solution:
    def minOperations(self, nums: List[int]) -> int:
        ans = n = len(nums)
        nums = sorted(set(nums))
        for i, v in enumerate(nums):
            j = bisect_right(nums, v + n - 1)
            ans = min(ans, n - (j - i))
        return ans

Java

class Solution {
    public int minOperations(int[] nums) {
        int n = nums.length;
        Arrays.sort(nums);
        int m = 1;
        for (int i = 1; i < n; ++i) {
            if (nums[i] != nums[i - 1]) {
                nums[m++] = nums[i];
            }
        }
        int ans = n;
        for (int i = 0; i < m; ++i) {
            int j = search(nums, nums[i] + n - 1, i, m);
            ans = Math.min(ans, n - (j - i));
        }
        return ans;
    }

    private int search(int[] nums, int x, int left, int right) {
        while (left < right) {
            int mid = (left + right) >> 1;
            if (nums[mid] > x) {
                right = mid;
            } else {
                left = mid + 1;
            }
        }
        return left;
    }
}

C++

class Solution {
public:
    int minOperations(vector<int>& nums) {
        sort(nums.begin(), nums.end());
        int m = unique(nums.begin(), nums.end()) - nums.begin();
        int n = nums.size();
        int ans = n;
        for (int i = 0; i < m; ++i) {
            int j = upper_bound(nums.begin() + i, nums.begin() + m, nums[i] + n - 1) - nums.begin();
            ans = min(ans, n - (j - i));
        }
        return ans;
    }
};

Go

func minOperations(nums []int) int {
	sort.Ints(nums)
	n := len(nums)
	m := 1
	for i := 1; i < n; i++ {
		if nums[i] != nums[i-1] {
			nums[m] = nums[i]
			m++
		}
	}
	ans := n
	for i := 0; i < m; i++ {
		j := sort.Search(m, func(k int) bool { return nums[k] > nums[i]+n-1 })
		ans = min(ans, n-(j-i))
	}
	return ans
}

Rust

use std::collections::BTreeSet;

impl Solution {
    #[allow(dead_code)]
    pub fn min_operations(nums: Vec<i32>) -> i32 {
        let n = nums.len();
        let nums = nums.into_iter().collect::<BTreeSet<i32>>();

        let m = nums.len();
        let nums = nums.into_iter().collect::<Vec<i32>>();

        let mut ans = n;

        for i in 0..m {
            let j = match nums.binary_search(&(nums[i] + (n as i32))) {
                Ok(idx) => idx,
                Err(idx) => idx,
            };
            ans = std::cmp::min(ans, n - (j - i));
        }

        ans as i32
    }
}

Solution 2: Sorting + Deduplication + Two Pointers

Similar to Solution 1, we first sort the array and remove duplicates.

Then, we traverse the array, enumerating the current element $nums[i]$ as the minimum value of the consecutive array. We use two pointers to find the first position $j$ that is greater than $nums[i] + n - 1$. Then, $j-i$ is the length of the consecutive array when the current element is the minimum value. We update the answer, i.e., $ans = \min(ans, n - (j - i))$.

Finally, we return $ans$.

The time complexity is $O(n \times \log n)$, and the space complexity is $O(\log n)$. Here, $n$ is the length of the array.

Python3

class Solution:
    def minOperations(self, nums: List[int]) -> int:
        n = len(nums)
        nums = sorted(set(nums))
        ans, j = n, 0
        for i, v in enumerate(nums):
            while j < len(nums) and nums[j] - v <= n - 1:
                j += 1
            ans = min(ans, n - (j - i))
        return ans

Java

class Solution {
    public int minOperations(int[] nums) {
        int n = nums.length;
        Arrays.sort(nums);
        int m = 1;
        for (int i = 1; i < n; ++i) {
            if (nums[i] != nums[i - 1]) {
                nums[m++] = nums[i];
            }
        }
        int ans = n;
        for (int i = 0, j = 0; i < m; ++i) {
            while (j < m && nums[j] - nums[i] <= n - 1) {
                ++j;
            }
            ans = Math.min(ans, n - (j - i));
        }
        return ans;
    }
}

C++

class Solution {
public:
    int minOperations(vector<int>& nums) {
        sort(nums.begin(), nums.end());
        int m = unique(nums.begin(), nums.end()) - nums.begin();
        int n = nums.size();
        int ans = n;
        for (int i = 0, j = 0; i < m; ++i) {
            while (j < m && nums[j] - nums[i] <= n - 1) {
                ++j;
            }
            ans = min(ans, n - (j - i));
        }
        return ans;
    }
};

Go

func minOperations(nums []int) int {
	sort.Ints(nums)
	n := len(nums)
	m := 1
	for i := 1; i < n; i++ {
		if nums[i] != nums[i-1] {
			nums[m] = nums[i]
			m++
		}
	}
	ans := n
	for i, j := 0, 0; i < m; i++ {
		for j < m && nums[j]-nums[i] <= n-1 {
			j++
		}
		ans = min(ans, n-(j-i))
	}
	return ans
}