comments | difficulty | edit_url | rating | source | tags | ||
---|---|---|---|---|---|---|---|
true |
Hard |
2130 |
Weekly Contest 267 Q4 |
|
You are given an integer n
indicating the number of people in a network. Each person is labeled from 0
to n - 1
.
You are also given a 0-indexed 2D integer array restrictions
, where restrictions[i] = [xi, yi]
means that person xi
and person yi
cannot become friends, either directly or indirectly through other people.
Initially, no one is friends with each other. You are given a list of friend requests as a 0-indexed 2D integer array requests
, where requests[j] = [uj, vj]
is a friend request between person uj
and person vj
.
A friend request is successful if uj
and vj
can be friends. Each friend request is processed in the given order (i.e., requests[j]
occurs before requests[j + 1]
), and upon a successful request, uj
and vj
become direct friends for all future friend requests.
Return a boolean array result
, where each result[j]
is true
if the jth
friend request is successful or false
if it is not.
Note: If uj
and vj
are already direct friends, the request is still successful.
Example 1:
Input: n = 3, restrictions = [[0,1]], requests = [[0,2],[2,1]] Output: [true,false] Explanation: Request 0: Person 0 and person 2 can be friends, so they become direct friends. Request 1: Person 2 and person 1 cannot be friends since person 0 and person 1 would be indirect friends (1--2--0).
Example 2:
Input: n = 3, restrictions = [[0,1]], requests = [[1,2],[0,2]] Output: [true,false] Explanation: Request 0: Person 1 and person 2 can be friends, so they become direct friends. Request 1: Person 0 and person 2 cannot be friends since person 0 and person 1 would be indirect friends (0--2--1).
Example 3:
Input: n = 5, restrictions = [[0,1],[1,2],[2,3]], requests = [[0,4],[1,2],[3,1],[3,4]] Output: [true,false,true,false] Explanation: Request 0: Person 0 and person 4 can be friends, so they become direct friends. Request 1: Person 1 and person 2 cannot be friends since they are directly restricted. Request 2: Person 3 and person 1 can be friends, so they become direct friends. Request 3: Person 3 and person 4 cannot be friends since person 0 and person 1 would be indirect friends (0--4--3--1).
Constraints:
2 <= n <= 1000
0 <= restrictions.length <= 1000
restrictions[i].length == 2
0 <= xi, yi <= n - 1
xi != yi
1 <= requests.length <= 1000
requests[j].length == 2
0 <= uj, vj <= n - 1
uj != vj
We can use a union-find set to maintain the friend relationships, and then for each request, we determine whether it meets the restriction conditions.
For the two people
The time complexity is
class Solution:
def friendRequests(
self, n: int, restrictions: List[List[int]], requests: List[List[int]]
) -> List[bool]:
def find(x: int) -> int:
if p[x] != x:
p[x] = find(p[x])
return p[x]
p = list(range(n))
ans = []
for u, v in requests:
pu, pv = find(u), find(v)
if pu == pv:
ans.append(True)
else:
ok = True
for x, y in restrictions:
px, py = find(x), find(y)
if (pu == px and pv == py) or (pu == py and pv == px):
ok = False
break
ans.append(ok)
if ok:
p[pu] = pv
return ans
class Solution {
private int[] p;
public boolean[] friendRequests(int n, int[][] restrictions, int[][] requests) {
p = new int[n];
for (int i = 0; i < n; ++i) {
p[i] = i;
}
int m = requests.length;
boolean[] ans = new boolean[m];
for (int i = 0; i < m; ++i) {
int u = requests[i][0], v = requests[i][1];
int pu = find(u), pv = find(v);
if (pu == pv) {
ans[i] = true;
} else {
boolean ok = true;
for (var r : restrictions) {
int px = find(r[0]), py = find(r[1]);
if ((pu == px && pv == py) || (pu == py && pv == px)) {
ok = false;
break;
}
}
if (ok) {
ans[i] = true;
p[pu] = pv;
}
}
}
return ans;
}
private int find(int x) {
if (p[x] != x) {
p[x] = find(p[x]);
}
return p[x];
}
}
class Solution {
public:
vector<bool> friendRequests(int n, vector<vector<int>>& restrictions, vector<vector<int>>& requests) {
vector<int> p(n);
iota(p.begin(), p.end(), 0);
function<int(int)> find = [&](int x) {
if (p[x] != x) {
p[x] = find(p[x]);
}
return p[x];
};
vector<bool> ans;
for (auto& req : requests) {
int u = req[0], v = req[1];
int pu = find(u), pv = find(v);
if (pu == pv) {
ans.push_back(true);
} else {
bool ok = true;
for (auto& r : restrictions) {
int px = find(r[0]), py = find(r[1]);
if ((pu == px && pv == py) || (pu == py && pv == px)) {
ok = false;
break;
}
}
ans.push_back(ok);
if (ok) {
p[pu] = pv;
}
}
}
return ans;
}
};
func friendRequests(n int, restrictions [][]int, requests [][]int) (ans []bool) {
p := make([]int, n)
for i := range p {
p[i] = i
}
var find func(int) int
find = func(x int) int {
if p[x] != x {
p[x] = find(p[x])
}
return p[x]
}
for _, req := range requests {
pu, pv := find(req[0]), find(req[1])
if pu == pv {
ans = append(ans, true)
} else {
ok := true
for _, r := range restrictions {
px, py := find(r[0]), find(r[1])
if px == pu && py == pv || px == pv && py == pu {
ok = false
break
}
}
ans = append(ans, ok)
if ok {
p[pv] = pu
}
}
}
return
}
function friendRequests(n: number, restrictions: number[][], requests: number[][]): boolean[] {
const p: number[] = Array.from({ length: n }, (_, i) => i);
const find = (x: number): number => {
if (p[x] !== x) {
p[x] = find(p[x]);
}
return p[x];
};
const ans: boolean[] = [];
for (const [u, v] of requests) {
const pu = find(u);
const pv = find(v);
if (pu === pv) {
ans.push(true);
} else {
let ok = true;
for (const [x, y] of restrictions) {
const px = find(x);
const py = find(y);
if ((px === pu && py === pv) || (px === pv && py === pu)) {
ok = false;
break;
}
}
ans.push(ok);
if (ok) {
p[pu] = pv;
}
}
}
return ans;
}