comments | difficulty | edit_url | rating | source | tags | |||||
---|---|---|---|---|---|---|---|---|---|---|
true |
Hard |
2158 |
Weekly Contest 273 Q4 |
|
Alice had a 0-indexed array arr
consisting of n
positive integers. She chose an arbitrary positive integer k
and created two new 0-indexed integer arrays lower
and higher
in the following manner:
lower[i] = arr[i] - k
, for every indexi
where0 <= i < n
higher[i] = arr[i] + k
, for every indexi
where0 <= i < n
Unfortunately, Alice lost all three arrays. However, she remembers the integers that were present in the arrays lower
and higher
, but not the array each integer belonged to. Help Alice and recover the original array.
Given an array nums
consisting of 2n
integers, where exactly n
of the integers were present in lower
and the remaining in higher
, return the original array arr
. In case the answer is not unique, return any valid array.
Note: The test cases are generated such that there exists at least one valid array arr
.
Example 1:
Input: nums = [2,10,6,4,8,12] Output: [3,7,11] Explanation: If arr = [3,7,11] and k = 1, we get lower = [2,6,10] and higher = [4,8,12]. Combining lower and higher gives us [2,6,10,4,8,12], which is a permutation of nums. Another valid possibility is that arr = [5,7,9] and k = 3. In that case, lower = [2,4,6] and higher = [8,10,12].
Example 2:
Input: nums = [1,1,3,3] Output: [2,2] Explanation: If arr = [2,2] and k = 1, we get lower = [1,1] and higher = [3,3]. Combining lower and higher gives us [1,1,3,3], which is equal to nums. Note that arr cannot be [1,3] because in that case, the only possible way to obtain [1,1,3,3] is with k = 0. This is invalid since k must be positive.
Example 3:
Input: nums = [5,435] Output: [220] Explanation: The only possible combination is arr = [220] and k = 215. Using them, we get lower = [5] and higher = [435].
Constraints:
2 * n == nums.length
1 <= n <= 1000
1 <= nums[i] <= 109
- The test cases are generated such that there exists at least one valid array
arr
.
class Solution:
def recoverArray(self, nums: List[int]) -> List[int]:
nums.sort()
n = len(nums)
for i in range(1, n):
d = nums[i] - nums[0]
if d == 0 or d % 2 == 1:
continue
vis = [False] * n
vis[i] = True
ans = [(nums[0] + nums[i]) >> 1]
l, r = 1, i + 1
while r < n:
while l < n and vis[l]:
l += 1
while r < n and nums[r] - nums[l] < d:
r += 1
if r == n or nums[r] - nums[l] > d:
break
vis[r] = True
ans.append((nums[l] + nums[r]) >> 1)
l, r = l + 1, r + 1
if len(ans) == (n >> 1):
return ans
return []
class Solution {
public int[] recoverArray(int[] nums) {
Arrays.sort(nums);
for (int i = 1, n = nums.length; i < n; ++i) {
int d = nums[i] - nums[0];
if (d == 0 || d % 2 == 1) {
continue;
}
boolean[] vis = new boolean[n];
vis[i] = true;
List<Integer> t = new ArrayList<>();
t.add((nums[0] + nums[i]) >> 1);
for (int l = 1, r = i + 1; r < n; ++l, ++r) {
while (l < n && vis[l]) {
++l;
}
while (r < n && nums[r] - nums[l] < d) {
++r;
}
if (r == n || nums[r] - nums[l] > d) {
break;
}
vis[r] = true;
t.add((nums[l] + nums[r]) >> 1);
}
if (t.size() == (n >> 1)) {
int[] ans = new int[t.size()];
int idx = 0;
for (int e : t) {
ans[idx++] = e;
}
return ans;
}
}
return null;
}
}
class Solution {
public:
vector<int> recoverArray(vector<int>& nums) {
sort(nums.begin(), nums.end());
for (int i = 1, n = nums.size(); i < n; ++i) {
int d = nums[i] - nums[0];
if (d == 0 || d % 2 == 1) continue;
vector<bool> vis(n);
vis[i] = true;
vector<int> ans;
ans.push_back((nums[0] + nums[i]) >> 1);
for (int l = 1, r = i + 1; r < n; ++l, ++r) {
while (l < n && vis[l]) ++l;
while (r < n && nums[r] - nums[l] < d) ++r;
if (r == n || nums[r] - nums[l] > d) break;
vis[r] = true;
ans.push_back((nums[l] + nums[r]) >> 1);
}
if (ans.size() == (n >> 1)) return ans;
}
return {};
}
};
func recoverArray(nums []int) []int {
sort.Ints(nums)
for i, n := 1, len(nums); i < n; i++ {
d := nums[i] - nums[0]
if d == 0 || d%2 == 1 {
continue
}
vis := make([]bool, n)
vis[i] = true
ans := []int{(nums[0] + nums[i]) >> 1}
for l, r := 1, i+1; r < n; l, r = l+1, r+1 {
for l < n && vis[l] {
l++
}
for r < n && nums[r]-nums[l] < d {
r++
}
if r == n || nums[r]-nums[l] > d {
break
}
vis[r] = true
ans = append(ans, (nums[l]+nums[r])>>1)
}
if len(ans) == (n >> 1) {
return ans
}
}
return []int{}
}