Skip to content

Latest commit

 

History

History
254 lines (218 loc) · 7.83 KB

File metadata and controls

254 lines (218 loc) · 7.83 KB
comments difficulty edit_url tags
true
Hard
Array
Dynamic Programming

中文文档

Description

You are given two 0-indexed integer arrays nums1 and nums2 of length n.

A range [l, r] (inclusive) where 0 <= l <= r < n is balanced if:

  • For every i in the range [l, r], you pick either nums1[i] or nums2[i].
  • The sum of the numbers you pick from nums1 equals to the sum of the numbers you pick from nums2 (the sum is considered to be 0 if you pick no numbers from an array).

Two balanced ranges from [l1, r1] and [l2, r2] are considered to be different if at least one of the following is true:

  • l1 != l2
  • r1 != r2
  • nums1[i] is picked in the first range, and nums2[i] is picked in the second range or vice versa for at least one i.

Return the number of different ranges that are balanced. Since the answer may be very large, return it modulo 109 + 7.

 

Example 1:

Input: nums1 = [1,2,5], nums2 = [2,6,3]
Output: 3
Explanation: The balanced ranges are:
- [0, 1] where we choose nums2[0], and nums1[1].
  The sum of the numbers chosen from nums1 equals the sum of the numbers chosen from nums2: 2 = 2.
- [0, 2] where we choose nums1[0], nums2[1], and nums1[2].
  The sum of the numbers chosen from nums1 equals the sum of the numbers chosen from nums2: 1 + 5 = 6.
- [0, 2] where we choose nums1[0], nums1[1], and nums2[2].
  The sum of the numbers chosen from nums1 equals the sum of the numbers chosen from nums2: 1 + 2 = 3.
Note that the second and third balanced ranges are different.
In the second balanced range, we choose nums2[1] and in the third balanced range, we choose nums1[1].

Example 2:

Input: nums1 = [0,1], nums2 = [1,0]
Output: 4
Explanation: The balanced ranges are:
- [0, 0] where we choose nums1[0].
  The sum of the numbers chosen from nums1 equals the sum of the numbers chosen from nums2: 0 = 0.
- [1, 1] where we choose nums2[1].
  The sum of the numbers chosen from nums1 equals the sum of the numbers chosen from nums2: 0 = 0.
- [0, 1] where we choose nums1[0] and nums2[1].
  The sum of the numbers chosen from nums1 equals the sum of the numbers chosen from nums2: 0 = 0.
- [0, 1] where we choose nums2[0] and nums1[1].
  The sum of the numbers chosen from nums1 equals the sum of the numbers chosen from nums2: 1 = 1.

 

Constraints:

  • n == nums1.length == nums2.length
  • 1 <= n <= 100
  • 0 <= nums1[i], nums2[i] <= 100

Solutions

Solution 1

Python3

class Solution:
    def countSubranges(self, nums1: List[int], nums2: List[int]) -> int:
        n = len(nums1)
        s1, s2 = sum(nums1), sum(nums2)
        f = [[0] * (s1 + s2 + 1) for _ in range(n)]
        ans = 0
        mod = 10**9 + 7
        for i, (a, b) in enumerate(zip(nums1, nums2)):
            f[i][a + s2] += 1
            f[i][-b + s2] += 1
            if i:
                for j in range(s1 + s2 + 1):
                    if j >= a:
                        f[i][j] = (f[i][j] + f[i - 1][j - a]) % mod
                    if j + b < s1 + s2 + 1:
                        f[i][j] = (f[i][j] + f[i - 1][j + b]) % mod
            ans = (ans + f[i][s2]) % mod
        return ans

Java

class Solution {
    public int countSubranges(int[] nums1, int[] nums2) {
        int n = nums1.length;
        int s1 = Arrays.stream(nums1).sum();
        int s2 = Arrays.stream(nums2).sum();
        int[][] f = new int[n][s1 + s2 + 1];
        int ans = 0;
        final int mod = (int) 1e9 + 7;
        for (int i = 0; i < n; ++i) {
            int a = nums1[i], b = nums2[i];
            f[i][a + s2]++;
            f[i][-b + s2]++;
            if (i > 0) {
                for (int j = 0; j <= s1 + s2; ++j) {
                    if (j >= a) {
                        f[i][j] = (f[i][j] + f[i - 1][j - a]) % mod;
                    }
                    if (j + b <= s1 + s2) {
                        f[i][j] = (f[i][j] + f[i - 1][j + b]) % mod;
                    }
                }
            }
            ans = (ans + f[i][s2]) % mod;
        }
        return ans;
    }
}

C++

class Solution {
public:
    int countSubranges(vector<int>& nums1, vector<int>& nums2) {
        int n = nums1.size();
        int s1 = accumulate(nums1.begin(), nums1.end(), 0);
        int s2 = accumulate(nums2.begin(), nums2.end(), 0);
        int f[n][s1 + s2 + 1];
        memset(f, 0, sizeof(f));
        int ans = 0;
        const int mod = 1e9 + 7;
        for (int i = 0; i < n; ++i) {
            int a = nums1[i], b = nums2[i];
            f[i][a + s2]++;
            f[i][-b + s2]++;
            if (i) {
                for (int j = 0; j <= s1 + s2; ++j) {
                    if (j >= a) {
                        f[i][j] = (f[i][j] + f[i - 1][j - a]) % mod;
                    }
                    if (j + b <= s1 + s2) {
                        f[i][j] = (f[i][j] + f[i - 1][j + b]) % mod;
                    }
                }
            }
            ans = (ans + f[i][s2]) % mod;
        }
        return ans;
    }
};

Go

func countSubranges(nums1 []int, nums2 []int) (ans int) {
	n := len(nums1)
	s1, s2 := sum(nums1), sum(nums2)
	f := make([][]int, n)
	for i := range f {
		f[i] = make([]int, s1+s2+1)
	}
	const mod int = 1e9 + 7
	for i, a := range nums1 {
		b := nums2[i]
		f[i][a+s2]++
		f[i][-b+s2]++
		if i > 0 {
			for j := 0; j <= s1+s2; j++ {
				if j >= a {
					f[i][j] = (f[i][j] + f[i-1][j-a]) % mod
				}
				if j+b <= s1+s2 {
					f[i][j] = (f[i][j] + f[i-1][j+b]) % mod
				}
			}
		}
		ans = (ans + f[i][s2]) % mod
	}
	return
}

func sum(nums []int) (ans int) {
	for _, x := range nums {
		ans += x
	}
	return
}

TypeScript

function countSubranges(nums1: number[], nums2: number[]): number {
    const n = nums1.length;
    const s1 = nums1.reduce((a, b) => a + b, 0);
    const s2 = nums2.reduce((a, b) => a + b, 0);
    const f: number[][] = Array(n)
        .fill(0)
        .map(() => Array(s1 + s2 + 1).fill(0));
    const mod = 1e9 + 7;
    let ans = 0;
    for (let i = 0; i < n; ++i) {
        const [a, b] = [nums1[i], nums2[i]];
        f[i][a + s2]++;
        f[i][-b + s2]++;
        if (i) {
            for (let j = 0; j <= s1 + s2; ++j) {
                if (j >= a) {
                    f[i][j] = (f[i][j] + f[i - 1][j - a]) % mod;
                }
                if (j + b <= s1 + s2) {
                    f[i][j] = (f[i][j] + f[i - 1][j + b]) % mod;
                }
            }
        }
        ans = (ans + f[i][s2]) % mod;
    }
    return ans;
}