Skip to content

Latest commit

 

History

History
255 lines (214 loc) · 7.74 KB

File metadata and controls

255 lines (214 loc) · 7.74 KB
comments difficulty edit_url rating source tags
true
Easy
1270
Biweekly Contest 84 Q1
Array
Hash Table
Ordered Set
Sorting

中文文档

Description

You are given two 2D integer arrays, items1 and items2, representing two sets of items. Each array items has the following properties:

  • items[i] = [valuei, weighti] where valuei represents the value and weighti represents the weight of the ith item.
  • The value of each item in items is unique.

Return a 2D integer array ret where ret[i] = [valuei, weighti], with weighti being the sum of weights of all items with value valuei.

Note: ret should be returned in ascending order by value.

 

Example 1:

Input: items1 = [[1,1],[4,5],[3,8]], items2 = [[3,1],[1,5]]
Output: [[1,6],[3,9],[4,5]]
Explanation: 
The item with value = 1 occurs in items1 with weight = 1 and in items2 with weight = 5, total weight = 1 + 5 = 6.
The item with value = 3 occurs in items1 with weight = 8 and in items2 with weight = 1, total weight = 8 + 1 = 9.
The item with value = 4 occurs in items1 with weight = 5, total weight = 5.  
Therefore, we return [[1,6],[3,9],[4,5]].

Example 2:

Input: items1 = [[1,1],[3,2],[2,3]], items2 = [[2,1],[3,2],[1,3]]
Output: [[1,4],[2,4],[3,4]]
Explanation: 
The item with value = 1 occurs in items1 with weight = 1 and in items2 with weight = 3, total weight = 1 + 3 = 4.
The item with value = 2 occurs in items1 with weight = 3 and in items2 with weight = 1, total weight = 3 + 1 = 4.
The item with value = 3 occurs in items1 with weight = 2 and in items2 with weight = 2, total weight = 2 + 2 = 4.
Therefore, we return [[1,4],[2,4],[3,4]].

Example 3:

Input: items1 = [[1,3],[2,2]], items2 = [[7,1],[2,2],[1,4]]
Output: [[1,7],[2,4],[7,1]]
Explanation:
The item with value = 1 occurs in items1 with weight = 3 and in items2 with weight = 4, total weight = 3 + 4 = 7. 
The item with value = 2 occurs in items1 with weight = 2 and in items2 with weight = 2, total weight = 2 + 2 = 4. 
The item with value = 7 occurs in items2 with weight = 1, total weight = 1.
Therefore, we return [[1,7],[2,4],[7,1]].

 

Constraints:

  • 1 <= items1.length, items2.length <= 1000
  • items1[i].length == items2[i].length == 2
  • 1 <= valuei, weighti <= 1000
  • Each valuei in items1 is unique.
  • Each valuei in items2 is unique.

Solutions

Solution 1: Hash Table or Array

We can use a hash table or array cnt to count the total weight of each item in items1 and items2. Then, we traverse the values in ascending order, adding each value and its corresponding total weight to the result array.

The time complexity is $O(n + m)$ and the space complexity is $O(n + m)$, where $n$ and $m$ are the lengths of items1 and items2 respectively.

Python3

class Solution:
    def mergeSimilarItems(
        self, items1: List[List[int]], items2: List[List[int]]
    ) -> List[List[int]]:
        cnt = Counter()
        for v, w in chain(items1, items2):
            cnt[v] += w
        return sorted(cnt.items())

Java

class Solution {
    public List<List<Integer>> mergeSimilarItems(int[][] items1, int[][] items2) {
        int[] cnt = new int[1010];
        for (var x : items1) {
            cnt[x[0]] += x[1];
        }
        for (var x : items2) {
            cnt[x[0]] += x[1];
        }
        List<List<Integer>> ans = new ArrayList<>();
        for (int i = 0; i < cnt.length; ++i) {
            if (cnt[i] > 0) {
                ans.add(List.of(i, cnt[i]));
            }
        }
        return ans;
    }
}

C++

class Solution {
public:
    vector<vector<int>> mergeSimilarItems(vector<vector<int>>& items1, vector<vector<int>>& items2) {
        int cnt[1010]{};
        for (auto& x : items1) {
            cnt[x[0]] += x[1];
        }
        for (auto& x : items2) {
            cnt[x[0]] += x[1];
        }
        vector<vector<int>> ans;
        for (int i = 0; i < 1010; ++i) {
            if (cnt[i]) {
                ans.push_back({i, cnt[i]});
            }
        }
        return ans;
    }
};

Go

func mergeSimilarItems(items1 [][]int, items2 [][]int) (ans [][]int) {
	cnt := [1010]int{}
	for _, x := range items1 {
		cnt[x[0]] += x[1]
	}
	for _, x := range items2 {
		cnt[x[0]] += x[1]
	}
	for i, x := range cnt {
		if x > 0 {
			ans = append(ans, []int{i, x})
		}
	}
	return
}

TypeScript

function mergeSimilarItems(items1: number[][], items2: number[][]): number[][] {
    const count = new Array(1001).fill(0);
    for (const [v, w] of items1) {
        count[v] += w;
    }
    for (const [v, w] of items2) {
        count[v] += w;
    }
    return [...count.entries()].filter(v => v[1] !== 0);
}

Rust

impl Solution {
    pub fn merge_similar_items(items1: Vec<Vec<i32>>, items2: Vec<Vec<i32>>) -> Vec<Vec<i32>> {
        let mut count = [0; 1001];
        for item in items1.iter() {
            count[item[0] as usize] += item[1];
        }
        for item in items2.iter() {
            count[item[0] as usize] += item[1];
        }
        count
            .iter()
            .enumerate()
            .filter_map(|(i, &v)| {
                if v == 0 {
                    return None;
                }
                Some(vec![i as i32, v])
            })
            .collect()
    }
}

C

/**
 * Return an array of arrays of size *returnSize.
 * The sizes of the arrays are returned as *returnColumnSizes array.
 * Note: Both returned array and *columnSizes array must be malloced, assume caller calls free().
 */
int** mergeSimilarItems(int** items1, int items1Size, int* items1ColSize, int** items2, int items2Size,
    int* items2ColSize, int* returnSize, int** returnColumnSizes) {
    int count[1001] = {0};
    for (int i = 0; i < items1Size; i++) {
        count[items1[i][0]] += items1[i][1];
    }
    for (int i = 0; i < items2Size; i++) {
        count[items2[i][0]] += items2[i][1];
    }
    int** ans = malloc(sizeof(int*) * (items1Size + items2Size));
    *returnColumnSizes = malloc(sizeof(int) * (items1Size + items2Size));
    int size = 0;
    for (int i = 0; i < 1001; i++) {
        if (count[i]) {
            ans[size] = malloc(sizeof(int) * 2);
            ans[size][0] = i;
            ans[size][1] = count[i];
            (*returnColumnSizes)[size] = 2;
            size++;
        }
    }
    *returnSize = size;
    return ans;
}