comments | difficulty | edit_url | rating | source | tags | ||
---|---|---|---|---|---|---|---|
true |
Medium |
1418 |
Weekly Contest 306 Q2 |
|
You are given a directed graph with n
nodes labeled from 0
to n - 1
, where each node has exactly one outgoing edge.
The graph is represented by a given 0-indexed integer array edges
of length n
, where edges[i]
indicates that there is a directed edge from node i
to node edges[i]
.
The edge score of a node i
is defined as the sum of the labels of all the nodes that have an edge pointing to i
.
Return the node with the highest edge score. If multiple nodes have the same edge score, return the node with the smallest index.
Example 1:
Input: edges = [1,0,0,0,0,7,7,5] Output: 7 Explanation: - The nodes 1, 2, 3 and 4 have an edge pointing to node 0. The edge score of node 0 is 1 + 2 + 3 + 4 = 10. - The node 0 has an edge pointing to node 1. The edge score of node 1 is 0. - The node 7 has an edge pointing to node 5. The edge score of node 5 is 7. - The nodes 5 and 6 have an edge pointing to node 7. The edge score of node 7 is 5 + 6 = 11. Node 7 has the highest edge score so return 7.
Example 2:
Input: edges = [2,0,0,2] Output: 0 Explanation: - The nodes 1 and 2 have an edge pointing to node 0. The edge score of node 0 is 1 + 2 = 3. - The nodes 0 and 3 have an edge pointing to node 2. The edge score of node 2 is 0 + 3 = 3. Nodes 0 and 2 both have an edge score of 3. Since node 0 has a smaller index, we return 0.
Constraints:
n == edges.length
2 <= n <= 105
0 <= edges[i] < n
edges[i] != i
We define an array
Next, we traverse the array
Finally, return
The time complexity is
class Solution:
def edgeScore(self, edges: List[int]) -> int:
ans = 0
cnt = [0] * len(edges)
for i, j in enumerate(edges):
cnt[j] += i
if cnt[ans] < cnt[j] or (cnt[ans] == cnt[j] and j < ans):
ans = j
return ans
class Solution {
public int edgeScore(int[] edges) {
int n = edges.length;
long[] cnt = new long[n];
int ans = 0;
for (int i = 0; i < n; ++i) {
int j = edges[i];
cnt[j] += i;
if (cnt[ans] < cnt[j] || (cnt[ans] == cnt[j] && j < ans)) {
ans = j;
}
}
return ans;
}
}
class Solution {
public:
int edgeScore(vector<int>& edges) {
int n = edges.size();
vector<long long> cnt(n);
int ans = 0;
for (int i = 0; i < n; ++i) {
int j = edges[i];
cnt[j] += i;
if (cnt[ans] < cnt[j] || (cnt[ans] == cnt[j] && j < ans)) {
ans = j;
}
}
return ans;
}
};
func edgeScore(edges []int) (ans int) {
cnt := make([]int, len(edges))
for i, j := range edges {
cnt[j] += i
if cnt[ans] < cnt[j] || (cnt[ans] == cnt[j] && j < ans) {
ans = j
}
}
return
}
function edgeScore(edges: number[]): number {
const n = edges.length;
const cnt: number[] = Array(n).fill(0);
let ans: number = 0;
for (let i = 0; i < n; ++i) {
const j = edges[i];
cnt[j] += i;
if (cnt[ans] < cnt[j] || (cnt[ans] === cnt[j] && j < ans)) {
ans = j;
}
}
return ans;
}
impl Solution {
pub fn edge_score(edges: Vec<i32>) -> i32 {
let n = edges.len();
let mut cnt = vec![0_i64; n];
let mut ans = 0;
for (i, &j) in edges.iter().enumerate() {
let j = j as usize;
cnt[j] += i as i64;
if cnt[ans] < cnt[j] || (cnt[ans] == cnt[j] && j < ans) {
ans = j;
}
}
ans as i32
}
}