comments | difficulty | edit_url | rating | source | tags | |||||
---|---|---|---|---|---|---|---|---|---|---|
true |
Medium |
1711 |
Weekly Contest 307 Q3 |
|
You are given the root
of a binary tree with unique values, and an integer start
. At minute 0
, an infection starts from the node with value start
.
Each minute, a node becomes infected if:
- The node is currently uninfected.
- The node is adjacent to an infected node.
Return the number of minutes needed for the entire tree to be infected.
Example 1:
Input: root = [1,5,3,null,4,10,6,9,2], start = 3 Output: 4 Explanation: The following nodes are infected during: - Minute 0: Node 3 - Minute 1: Nodes 1, 10 and 6 - Minute 2: Node 5 - Minute 3: Node 4 - Minute 4: Nodes 9 and 2 It takes 4 minutes for the whole tree to be infected so we return 4.
Example 2:
Input: root = [1], start = 1 Output: 0 Explanation: At minute 0, the only node in the tree is infected so we return 0.
Constraints:
- The number of nodes in the tree is in the range
[1, 105]
. 1 <= Node.val <= 105
- Each node has a unique value.
- A node with a value of
start
exists in the tree.
First, we build a graph through one DFS, and get an adjacency list
Then, we use
The time complexity is
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def amountOfTime(self, root: Optional[TreeNode], start: int) -> int:
def dfs(node: Optional[TreeNode], fa: Optional[TreeNode]):
if node is None:
return
if fa:
g[node.val].append(fa.val)
g[fa.val].append(node.val)
dfs(node.left, node)
dfs(node.right, node)
def dfs2(node: int, fa: int) -> int:
ans = 0
for nxt in g[node]:
if nxt != fa:
ans = max(ans, 1 + dfs2(nxt, node))
return ans
g = defaultdict(list)
dfs(root, None)
return dfs2(start, -1)
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
private Map<Integer, List<Integer>> g = new HashMap<>();
public int amountOfTime(TreeNode root, int start) {
dfs(root, null);
return dfs2(start, -1);
}
private void dfs(TreeNode node, TreeNode fa) {
if (node == null) {
return;
}
if (fa != null) {
g.computeIfAbsent(node.val, k -> new ArrayList<>()).add(fa.val);
g.computeIfAbsent(fa.val, k -> new ArrayList<>()).add(node.val);
}
dfs(node.left, node);
dfs(node.right, node);
}
private int dfs2(int node, int fa) {
int ans = 0;
for (int nxt : g.getOrDefault(node, List.of())) {
if (nxt != fa) {
ans = Math.max(ans, 1 + dfs2(nxt, node));
}
}
return ans;
}
}
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
int amountOfTime(TreeNode* root, int start) {
unordered_map<int, vector<int>> g;
function<void(TreeNode*, TreeNode*)> dfs = [&](TreeNode* node, TreeNode* fa) {
if (!node) {
return;
}
if (fa) {
g[node->val].push_back(fa->val);
g[fa->val].push_back(node->val);
}
dfs(node->left, node);
dfs(node->right, node);
};
function<int(int, int)> dfs2 = [&](int node, int fa) -> int {
int ans = 0;
for (int nxt : g[node]) {
if (nxt != fa) {
ans = max(ans, 1 + dfs2(nxt, node));
}
}
return ans;
};
dfs(root, nullptr);
return dfs2(start, -1);
}
};
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func amountOfTime(root *TreeNode, start int) int {
g := map[int][]int{}
var dfs func(*TreeNode, *TreeNode)
dfs = func(node, fa *TreeNode) {
if node == nil {
return
}
if fa != nil {
g[node.Val] = append(g[node.Val], fa.Val)
g[fa.Val] = append(g[fa.Val], node.Val)
}
dfs(node.Left, node)
dfs(node.Right, node)
}
var dfs2 func(int, int) int
dfs2 = func(node, fa int) (ans int) {
for _, nxt := range g[node] {
if nxt != fa {
ans = max(ans, 1+dfs2(nxt, node))
}
}
return
}
dfs(root, nil)
return dfs2(start, -1)
}
/**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function amountOfTime(root: TreeNode | null, start: number): number {
const g: Map<number, number[]> = new Map();
const dfs = (node: TreeNode | null, fa: TreeNode | null) => {
if (!node) {
return;
}
if (fa) {
if (!g.has(node.val)) {
g.set(node.val, []);
}
g.get(node.val)!.push(fa.val);
if (!g.has(fa.val)) {
g.set(fa.val, []);
}
g.get(fa.val)!.push(node.val);
}
dfs(node.left, node);
dfs(node.right, node);
};
const dfs2 = (node: number, fa: number): number => {
let ans = 0;
for (const nxt of g.get(node) || []) {
if (nxt !== fa) {
ans = Math.max(ans, 1 + dfs2(nxt, node));
}
}
return ans;
};
dfs(root, null);
return dfs2(start, -1);
}