comments | difficulty | edit_url | tags | |||||
---|---|---|---|---|---|---|---|---|
true |
Medium |
|
You are given an array nums
consisting of positive integers.
Split the array into one or more disjoint subarrays such that:
- Each element of the array belongs to exactly one subarray, and
- The GCD of the elements of each subarray is strictly greater than
1
.
Return the minimum number of subarrays that can be obtained after the split.
Note that:
- The GCD of a subarray is the largest positive integer that evenly divides all the elements of the subarray.
- A subarray is a contiguous part of the array.
Example 1:
Input: nums = [12,6,3,14,8] Output: 2 Explanation: We can split the array into the subarrays: [12,6,3] and [14,8]. - The GCD of 12, 6 and 3 is 3, which is strictly greater than 1. - The GCD of 14 and 8 is 2, which is strictly greater than 1. It can be shown that splitting the array into one subarray will make the GCD = 1.
Example 2:
Input: nums = [4,12,6,14] Output: 1 Explanation: We can split the array into only one subarray, which is the whole array.
Constraints:
1 <= nums.length <= 2000
2 <= nums[i] <= 109
For each element in the array, if its greatest common divisor (gcd) with the previous element is
Therefore, we first initialize a variable
Next, we traverse the array from front to back, maintaining the gcd
The time complexity is
class Solution:
def minimumSplits(self, nums: List[int]) -> int:
ans, g = 1, 0
for x in nums:
g = gcd(g, x)
if g == 1:
ans += 1
g = x
return ans
class Solution {
public int minimumSplits(int[] nums) {
int ans = 1, g = 0;
for (int x : nums) {
g = gcd(g, x);
if (g == 1) {
++ans;
g = x;
}
}
return ans;
}
private int gcd(int a, int b) {
return b == 0 ? a : gcd(b, a % b);
}
}
class Solution {
public:
int minimumSplits(vector<int>& nums) {
int ans = 1, g = 0;
for (int x : nums) {
g = gcd(g, x);
if (g == 1) {
++ans;
g = x;
}
}
return ans;
}
};
func minimumSplits(nums []int) int {
ans, g := 1, 0
for _, x := range nums {
g = gcd(g, x)
if g == 1 {
ans++
g = x
}
}
return ans
}
func gcd(a, b int) int {
if b == 0 {
return a
}
return gcd(b, a%b)
}
function minimumSplits(nums: number[]): number {
let ans = 1;
let g = 0;
for (const x of nums) {
g = gcd(g, x);
if (g == 1) {
++ans;
g = x;
}
}
return ans;
}
function gcd(a: number, b: number): number {
return b ? gcd(b, a % b) : a;
}