Skip to content

Latest commit

 

History

History
228 lines (194 loc) · 6.13 KB

File metadata and controls

228 lines (194 loc) · 6.13 KB
comments difficulty edit_url rating source tags
true
Hard
2633
Biweekly Contest 93 Q4
Greedy
Array
Hash Table
Counting

中文文档

Description

You are given two 0-indexed integer arrays nums1 and nums2, of equal length n.

In one operation, you can swap the values of any two indices of nums1. The cost of this operation is the sum of the indices.

Find the minimum total cost of performing the given operation any number of times such that nums1[i] != nums2[i] for all 0 <= i <= n - 1 after performing all the operations.

Return the minimum total cost such that nums1 and nums2 satisfy the above condition. In case it is not possible, return -1.

 

Example 1:

Input: nums1 = [1,2,3,4,5], nums2 = [1,2,3,4,5]
Output: 10
Explanation: 
One of the ways we can perform the operations is:
- Swap values at indices 0 and 3, incurring cost = 0 + 3 = 3. Now, nums1 = [4,2,3,1,5]
- Swap values at indices 1 and 2, incurring cost = 1 + 2 = 3. Now, nums1 = [4,3,2,1,5].
- Swap values at indices 0 and 4, incurring cost = 0 + 4 = 4. Now, nums1 =[5,3,2,1,4].
We can see that for each index i, nums1[i] != nums2[i]. The cost required here is 10.
Note that there are other ways to swap values, but it can be proven that it is not possible to obtain a cost less than 10.

Example 2:

Input: nums1 = [2,2,2,1,3], nums2 = [1,2,2,3,3]
Output: 10
Explanation: 
One of the ways we can perform the operations is:
- Swap values at indices 2 and 3, incurring cost = 2 + 3 = 5. Now, nums1 = [2,2,1,2,3].
- Swap values at indices 1 and 4, incurring cost = 1 + 4 = 5. Now, nums1 = [2,3,1,2,2].
The total cost needed here is 10, which is the minimum possible.

Example 3:

Input: nums1 = [1,2,2], nums2 = [1,2,2]
Output: -1
Explanation: 
It can be shown that it is not possible to satisfy the given conditions irrespective of the number of operations we perform.
Hence, we return -1.

 

Constraints:

  • n == nums1.length == nums2.length
  • 1 <= n <= 105
  • 1 <= nums1[i], nums2[i] <= n

Solutions

Solution 1

Python3

class Solution:
    def minimumTotalCost(self, nums1: List[int], nums2: List[int]) -> int:
        ans = same = 0
        cnt = Counter()
        for i, (a, b) in enumerate(zip(nums1, nums2)):
            if a == b:
                same += 1
                ans += i
                cnt[a] += 1

        m = lead = 0
        for k, v in cnt.items():
            if v * 2 > same:
                m = v * 2 - same
                lead = k
                break
        for i, (a, b) in enumerate(zip(nums1, nums2)):
            if m and a != b and a != lead and b != lead:
                ans += i
                m -= 1
        return -1 if m else ans

Java

class Solution {
    public long minimumTotalCost(int[] nums1, int[] nums2) {
        long ans = 0;
        int same = 0;
        int n = nums1.length;
        int[] cnt = new int[n + 1];
        for (int i = 0; i < n; ++i) {
            if (nums1[i] == nums2[i]) {
                ans += i;
                ++same;
                ++cnt[nums1[i]];
            }
        }
        int m = 0, lead = 0;
        for (int i = 0; i < cnt.length; ++i) {
            int t = cnt[i] * 2 - same;
            if (t > 0) {
                m = t;
                lead = i;
                break;
            }
        }
        for (int i = 0; i < n; ++i) {
            if (m > 0 && nums1[i] != nums2[i] && nums1[i] != lead && nums2[i] != lead) {
                ans += i;
                --m;
            }
        }
        return m > 0 ? -1 : ans;
    }
}

C++

class Solution {
public:
    long long minimumTotalCost(vector<int>& nums1, vector<int>& nums2) {
        long long ans = 0;
        int same = 0;
        int n = nums1.size();
        int cnt[n + 1];
        memset(cnt, 0, sizeof cnt);
        for (int i = 0; i < n; ++i) {
            if (nums1[i] == nums2[i]) {
                ans += i;
                ++same;
                ++cnt[nums1[i]];
            }
        }
        int m = 0, lead = 0;
        for (int i = 0; i < n + 1; ++i) {
            int t = cnt[i] * 2 - same;
            if (t > 0) {
                m = t;
                lead = i;
                break;
            }
        }
        for (int i = 0; i < n; ++i) {
            if (m > 0 && nums1[i] != nums2[i] && nums1[i] != lead && nums2[i] != lead) {
                ans += i;
                --m;
            }
        }
        return m > 0 ? -1 : ans;
    }
};

Go

func minimumTotalCost(nums1 []int, nums2 []int) (ans int64) {
	same, n := 0, len(nums1)
	cnt := make([]int, n+1)
	for i, a := range nums1 {
		b := nums2[i]
		if a == b {
			same++
			ans += int64(i)
			cnt[a]++
		}
	}
	var m, lead int
	for i, v := range cnt {
		if t := v*2 - same; t > 0 {
			m = t
			lead = i
			break
		}
	}
	for i, a := range nums1 {
		b := nums2[i]
		if m > 0 && a != b && a != lead && b != lead {
			ans += int64(i)
			m--
		}
	}
	if m > 0 {
		return -1
	}
	return ans
}