comments | difficulty | edit_url | rating | source | tags | |||
---|---|---|---|---|---|---|---|---|
true |
Medium |
1604 |
Weekly Contest 326 Q3 |
|
You are given a string s
consisting of digits from 1
to 9
and an integer k
.
A partition of a string s
is called good if:
- Each digit of
s
is part of exactly one substring. - The value of each substring is less than or equal to
k
.
Return the minimum number of substrings in a good partition of s
. If no good partition of s
exists, return -1
.
Note that:
- The value of a string is its result when interpreted as an integer. For example, the value of
"123"
is123
and the value of"1"
is1
. - A substring is a contiguous sequence of characters within a string.
Example 1:
Input: s = "165462", k = 60 Output: 4 Explanation: We can partition the string into substrings "16", "54", "6", and "2". Each substring has a value less than or equal to k = 60. It can be shown that we cannot partition the string into less than 4 substrings.
Example 2:
Input: s = "238182", k = 5 Output: -1 Explanation: There is no good partition for this string.
Constraints:
1 <= s.length <= 105
s[i]
is a digit from'1'
to'9'
.1 <= k <= 109
<style type="text/css">.spoilerbutton {display:block; border:dashed; padding: 0px 0px; margin:10px 0px; font-size:150%; font-weight: bold; color:#000000; background-color:cyan; outline:0; } .spoiler {overflow:hidden;} .spoiler > div {-webkit-transition: all 0s ease;-moz-transition: margin 0s ease;-o-transition: all 0s ease;transition: margin 0s ease;} .spoilerbutton[value="Show Message"] + .spoiler > div {margin-top:-500%;} .spoilerbutton[value="Hide Message"] + .spoiler {padding:5px;} </style>
We design a function
The calculation process of the function
- If
$i \geq n$ , it means that it has reached the end of the string, return$0$ . - Otherwise, we enumerate all substrings starting from
$i$ . If the value of the substring is less than or equal to$k$ , then we can take the substring as a partition. Then we can get$dfs(j + 1)$ , where$j$ is the end index of the substring. We take the minimum value among all possible partitions, add$1$ , and that is the value of$dfs(i)$ .
Finally, if
To avoid repeated calculations, we can use memoization search.
The time complexity is
class Solution:
def minimumPartition(self, s: str, k: int) -> int:
@cache
def dfs(i):
if i >= n:
return 0
res, v = inf, 0
for j in range(i, n):
v = v * 10 + int(s[j])
if v > k:
break
res = min(res, dfs(j + 1))
return res + 1
n = len(s)
ans = dfs(0)
return ans if ans < inf else -1
class Solution {
private Integer[] f;
private int n;
private String s;
private int k;
private int inf = 1 << 30;
public int minimumPartition(String s, int k) {
n = s.length();
f = new Integer[n];
this.s = s;
this.k = k;
int ans = dfs(0);
return ans < inf ? ans : -1;
}
private int dfs(int i) {
if (i >= n) {
return 0;
}
if (f[i] != null) {
return f[i];
}
int res = inf;
long v = 0;
for (int j = i; j < n; ++j) {
v = v * 10 + (s.charAt(j) - '0');
if (v > k) {
break;
}
res = Math.min(res, dfs(j + 1));
}
return f[i] = res + 1;
}
}
class Solution {
public:
int minimumPartition(string s, int k) {
int n = s.size();
int f[n];
memset(f, 0, sizeof f);
const int inf = 1 << 30;
function<int(int)> dfs = [&](int i) -> int {
if (i >= n) return 0;
if (f[i]) return f[i];
int res = inf;
long v = 0;
for (int j = i; j < n; ++j) {
v = v * 10 + (s[j] - '0');
if (v > k) break;
res = min(res, dfs(j + 1));
}
return f[i] = res + 1;
};
int ans = dfs(0);
return ans < inf ? ans : -1;
}
};
func minimumPartition(s string, k int) int {
n := len(s)
f := make([]int, n)
const inf int = 1 << 30
var dfs func(int) int
dfs = func(i int) int {
if i >= n {
return 0
}
if f[i] > 0 {
return f[i]
}
res, v := inf, 0
for j := i; j < n; j++ {
v = v*10 + int(s[j]-'0')
if v > k {
break
}
res = min(res, dfs(j+1))
}
f[i] = res + 1
return f[i]
}
ans := dfs(0)
if ans < inf {
return ans
}
return -1
}