comments | difficulty | edit_url | rating | source | tags | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
true |
Hard |
2681 |
Weekly Contest 333 Q4 |
|
We define the lcp
matrix of any 0-indexed string word
of n
lowercase English letters as an n x n
grid such that:
lcp[i][j]
is equal to the length of the longest common prefix between the substringsword[i,n-1]
andword[j,n-1]
.
Given an n x n
matrix lcp
, return the alphabetically smallest string word
that corresponds to lcp
. If there is no such string, return an empty string.
A string a
is lexicographically smaller than a string b
(of the same length) if in the first position where a
and b
differ, string a
has a letter that appears earlier in the alphabet than the corresponding letter in b
. For example, "aabd"
is lexicographically smaller than "aaca"
because the first position they differ is at the third letter, and 'b'
comes before 'c'
.
Example 1:
Input: lcp = [[4,0,2,0],[0,3,0,1],[2,0,2,0],[0,1,0,1]] Output: "abab" Explanation: lcp corresponds to any 4 letter string with two alternating letters. The lexicographically smallest of them is "abab".
Example 2:
Input: lcp = [[4,3,2,1],[3,3,2,1],[2,2,2,1],[1,1,1,1]] Output: "aaaa" Explanation: lcp corresponds to any 4 letter string with a single distinct letter. The lexicographically smallest of them is "aaaa".
Example 3:
Input: lcp = [[4,3,2,1],[3,3,2,1],[2,2,2,1],[1,1,1,3]] Output: "" Explanation: lcp[3][3] cannot be equal to 3 since word[3,...,3] consists of only a single letter; Thus, no answer exists.
Constraints:
1 <= n ==
lcp.length ==
lcp[i].length
<= 1000
0 <= lcp[i][j] <= n
Since the constructed string requires the lexicographically smallest order, we can start by filling the string 'a'
.
If the current position 'a'
at position 'a'
. Then we add one to the ASCII code of the character 'a'
and continue to fill the remaining unfilled positions.
After filling, if there are unfilled positions in the string, it means that the corresponding string cannot be constructed, so we return an empty string.
Next, we can enumerate each position
- If
$s[i] = s[j]$ , at this time we need to judge whether$i$ and$j$ are the last positions of the string. If so, then$lcp[i][j]$ should be equal to$1$ , otherwise$lcp[i][j]$ should be equal to$0$ . If the above conditions are not met, it means that the corresponding string cannot be constructed, so we return an empty string. If$i$ and$j$ are not the last positions of the string, then$lcp[i][j]$ should be equal to$lcp[i + 1][j + 1] + 1$ , otherwise it means that the corresponding string cannot be constructed, so we return an empty string. - Otherwise, if
$lcp[i][j] > 0$ , it means that the corresponding string cannot be constructed, so we return an empty string.
If every position in the string meets the above conditions, then we can construct the corresponding string and return it.
The time complexity is
class Solution:
def findTheString(self, lcp: List[List[int]]) -> str:
n = len(lcp)
s = [""] * n
i = 0
for c in ascii_lowercase:
while i < n and s[i]:
i += 1
if i == n:
break
for j in range(i, n):
if lcp[i][j]:
s[j] = c
if "" in s:
return ""
for i in range(n - 1, -1, -1):
for j in range(n - 1, -1, -1):
if s[i] == s[j]:
if i == n - 1 or j == n - 1:
if lcp[i][j] != 1:
return ""
elif lcp[i][j] != lcp[i + 1][j + 1] + 1:
return ""
elif lcp[i][j]:
return ""
return "".join(s)
class Solution {
public String findTheString(int[][] lcp) {
int n = lcp.length;
char[] s = new char[n];
int i = 0;
for (char c = 'a'; c <= 'z'; ++c) {
while (i < n && s[i] != '\0') {
++i;
}
if (i == n) {
break;
}
for (int j = i; j < n; ++j) {
if (lcp[i][j] > 0) {
s[j] = c;
}
}
}
for (i = 0; i < n; ++i) {
if (s[i] == '\0') {
return "";
}
}
for (i = n - 1; i >= 0; --i) {
for (int j = n - 1; j >= 0; --j) {
if (s[i] == s[j]) {
if (i == n - 1 || j == n - 1) {
if (lcp[i][j] != 1) {
return "";
}
} else if (lcp[i][j] != lcp[i + 1][j + 1] + 1) {
return "";
}
} else if (lcp[i][j] > 0) {
return "";
}
}
}
return String.valueOf(s);
}
}
class Solution {
public:
string findTheString(vector<vector<int>>& lcp) {
int i = 0, n = lcp.size();
string s(n, '\0');
for (char c = 'a'; c <= 'z'; ++c) {
while (i < n && s[i]) {
++i;
}
if (i == n) {
break;
}
for (int j = i; j < n; ++j) {
if (lcp[i][j]) {
s[j] = c;
}
}
}
if (s.find('\0') != -1) {
return "";
}
for (i = n - 1; ~i; --i) {
for (int j = n - 1; ~j; --j) {
if (s[i] == s[j]) {
if (i == n - 1 || j == n - 1) {
if (lcp[i][j] != 1) {
return "";
}
} else if (lcp[i][j] != lcp[i + 1][j + 1] + 1) {
return "";
}
} else if (lcp[i][j]) {
return "";
}
}
}
return s;
}
};
func findTheString(lcp [][]int) string {
i, n := 0, len(lcp)
s := make([]byte, n)
for c := 'a'; c <= 'z'; c++ {
for i < n && s[i] != 0 {
i++
}
if i == n {
break
}
for j := i; j < n; j++ {
if lcp[i][j] > 0 {
s[j] = byte(c)
}
}
}
if bytes.IndexByte(s, 0) >= 0 {
return ""
}
for i := n - 1; i >= 0; i-- {
for j := n - 1; j >= 0; j-- {
if s[i] == s[j] {
if i == n-1 || j == n-1 {
if lcp[i][j] != 1 {
return ""
}
} else if lcp[i][j] != lcp[i+1][j+1]+1 {
return ""
}
} else if lcp[i][j] > 0 {
return ""
}
}
}
return string(s)
}
function findTheString(lcp: number[][]): string {
let i: number = 0;
const n: number = lcp.length;
let s: string = '\0'.repeat(n);
for (let ascii = 97; ascii < 123; ++ascii) {
const c: string = String.fromCharCode(ascii);
while (i < n && s[i] !== '\0') {
++i;
}
if (i === n) {
break;
}
for (let j = i; j < n; ++j) {
if (lcp[i][j]) {
s = s.substring(0, j) + c + s.substring(j + 1);
}
}
}
if (s.indexOf('\0') !== -1) {
return '';
}
for (i = n - 1; ~i; --i) {
for (let j = n - 1; ~j; --j) {
if (s[i] === s[j]) {
if (i === n - 1 || j === n - 1) {
if (lcp[i][j] !== 1) {
return '';
}
} else if (lcp[i][j] !== lcp[i + 1][j + 1] + 1) {
return '';
}
} else if (lcp[i][j]) {
return '';
}
}
}
return s;
}