comments | difficulty | edit_url | rating | source | tags | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
true |
Medium |
2023 |
Weekly Contest 337 Q3 |
|
You are given an array nums
of positive integers and a positive integer k
.
A subset of nums
is beautiful if it does not contain two integers with an absolute difference equal to k
.
Return the number of non-empty beautiful subsets of the array nums
.
A subset of nums
is an array that can be obtained by deleting some (possibly none) elements from nums
. Two subsets are different if and only if the chosen indices to delete are different.
Example 1:
Input: nums = [2,4,6], k = 2 Output: 4 Explanation: The beautiful subsets of the array nums are: [2], [4], [6], [2, 6]. It can be proved that there are only 4 beautiful subsets in the array [2,4,6].
Example 2:
Input: nums = [1], k = 1 Output: 1 Explanation: The beautiful subset of the array nums is [1]. It can be proved that there is only 1 beautiful subset in the array [1].
Constraints:
1 <= nums.length <= 20
1 <= nums[i], k <= 1000
We use a hash table or an array
For each number
- Do not choose
$x$ , and then directly recurse to the next number; - Choose
$x$ , then we need to check whether$x + k$ and$x - k$ have appeared in$cnt$ before, if neither has appeared before, then we can choose$x$ , at this time we add one to the number of$x$ , and then recurse to the next number, and finally subtract one from the number of$x$ .
Finally, we return
Time complexity
class Solution:
def beautifulSubsets(self, nums: List[int], k: int) -> int:
def dfs(i: int) -> None:
nonlocal ans
if i >= len(nums):
ans += 1
return
dfs(i + 1)
if cnt[nums[i] + k] == 0 and cnt[nums[i] - k] == 0:
cnt[nums[i]] += 1
dfs(i + 1)
cnt[nums[i]] -= 1
ans = -1
cnt = Counter()
dfs(0)
return ans
class Solution {
private int[] nums;
private int[] cnt = new int[1010];
private int ans = -1;
private int k;
public int beautifulSubsets(int[] nums, int k) {
this.k = k;
this.nums = nums;
dfs(0);
return ans;
}
private void dfs(int i) {
if (i >= nums.length) {
++ans;
return;
}
dfs(i + 1);
boolean ok1 = nums[i] + k >= cnt.length || cnt[nums[i] + k] == 0;
boolean ok2 = nums[i] - k < 0 || cnt[nums[i] - k] == 0;
if (ok1 && ok2) {
++cnt[nums[i]];
dfs(i + 1);
--cnt[nums[i]];
}
}
}
class Solution {
public:
int beautifulSubsets(vector<int>& nums, int k) {
int ans = -1;
int cnt[1010]{};
int n = nums.size();
function<void(int)> dfs = [&](int i) {
if (i >= n) {
++ans;
return;
}
dfs(i + 1);
bool ok1 = nums[i] + k >= 1010 || cnt[nums[i] + k] == 0;
bool ok2 = nums[i] - k < 0 || cnt[nums[i] - k] == 0;
if (ok1 && ok2) {
++cnt[nums[i]];
dfs(i + 1);
--cnt[nums[i]];
}
};
dfs(0);
return ans;
}
};
func beautifulSubsets(nums []int, k int) int {
ans := -1
n := len(nums)
cnt := [1010]int{}
var dfs func(int)
dfs = func(i int) {
if i >= n {
ans++
return
}
dfs(i + 1)
ok1 := nums[i]+k >= len(cnt) || cnt[nums[i]+k] == 0
ok2 := nums[i]-k < 0 || cnt[nums[i]-k] == 0
if ok1 && ok2 {
cnt[nums[i]]++
dfs(i + 1)
cnt[nums[i]]--
}
}
dfs(0)
return ans
}
function beautifulSubsets(nums: number[], k: number): number {
let ans: number = -1;
const cnt: number[] = new Array(1010).fill(0);
const n: number = nums.length;
const dfs = (i: number) => {
if (i >= n) {
++ans;
return;
}
dfs(i + 1);
const ok1: boolean = nums[i] + k >= 1010 || cnt[nums[i] + k] === 0;
const ok2: boolean = nums[i] - k < 0 || cnt[nums[i] - k] === 0;
if (ok1 && ok2) {
++cnt[nums[i]];
dfs(i + 1);
--cnt[nums[i]];
}
};
dfs(0);
return ans;
}