Skip to content

Latest commit

 

History

History
289 lines (245 loc) · 8.62 KB

File metadata and controls

289 lines (245 loc) · 8.62 KB
comments difficulty edit_url tags
true
Medium
Array
Backtracking
Matrix

中文文档

Description

Given two positive integers m and n which are the height and width of a 0-indexed 2D-array board, a pair of positive integers (r, c) which is the starting position of the knight on the board.

Your task is to find an order of movements for the knight, in a manner that every cell of the board gets visited exactly once (the starting cell is considered visited and you shouldn't visit it again).

Return the array board in which the cells' values show the order of visiting the cell starting from 0 (the initial place of the knight).

Note that a knight can move from cell (r1, c1) to cell (r2, c2) if 0 <= r2 <= m - 1 and 0 <= c2 <= n - 1 and min(abs(r1 - r2), abs(c1 - c2)) = 1 and max(abs(r1 - r2), abs(c1 - c2)) = 2.

 

Example 1:

Input: m = 1, n = 1, r = 0, c = 0
Output: [[0]]
Explanation: There is only 1 cell and the knight is initially on it so there is only a 0 inside the 1x1 grid.

Example 2:

Input: m = 3, n = 4, r = 0, c = 0
Output: [[0,3,6,9],[11,8,1,4],[2,5,10,7]]
Explanation: By the following order of movements we can visit the entire board.
(0,0)->(1,2)->(2,0)->(0,1)->(1,3)->(2,1)->(0,2)->(2,3)->(1,1)->(0,3)->(2,2)->(1,0)

 

Constraints:

  • 1 <= m, n <= 5
  • 0 <= r <= m - 1
  • 0 <= c <= n - 1
  • The inputs will be generated such that there exists at least one possible order of movements with the given condition

Solutions

Solution 1: Backtracking

We create a two-dimensional array $g$, used to record the knight's movement order, initially $g[r][c] = -1$, and all other positions are set to $-1$ as well. Additionally, we need a variable $ok$ to record whether a solution has been found.

Next, we start depth-first search from $(r, c)$. Each time we search position $(i, j)$, we first check if $g[i][j]$ equals $m \times n - 1$. If so, it means we have found a solution, then we set $ok$ to true and return. Otherwise, we enumerate the knight's eight possible movement directions to position $(x, y)$. If $0 \leq x &lt; m$, $0 \leq y &lt; n$, and $g[x][y]=-1$, then we update $g[x][y]$ to $g[i][j]+1$, and recursively search position $(x, y)$. If after the search, the variable $ok$ is true, we return directly. Otherwise, we reset $g[x][y]$ to $-1$ and continue searching in other directions.

Finally, return the two-dimensional array $g$.

The time complexity is $O(8^{m \times n})$, and the space complexity is $O(m \times n)$. Here, $m$ and $n$ are the integers given in the problem.

Python3

class Solution:
    def tourOfKnight(self, m: int, n: int, r: int, c: int) -> List[List[int]]:
        def dfs(i: int, j: int):
            nonlocal ok
            if g[i][j] == m * n - 1:
                ok = True
                return
            for a, b in pairwise((-2, -1, 2, 1, -2, 1, 2, -1, -2)):
                x, y = i + a, j + b
                if 0 <= x < m and 0 <= y < n and g[x][y] == -1:
                    g[x][y] = g[i][j] + 1
                    dfs(x, y)
                    if ok:
                        return
                    g[x][y] = -1

        g = [[-1] * n for _ in range(m)]
        g[r][c] = 0
        ok = False
        dfs(r, c)
        return g

Java

class Solution {
    private int[][] g;
    private int m;
    private int n;
    private boolean ok;

    public int[][] tourOfKnight(int m, int n, int r, int c) {
        this.m = m;
        this.n = n;
        this.g = new int[m][n];
        for (var row : g) {
            Arrays.fill(row, -1);
        }
        g[r][c] = 0;
        dfs(r, c);
        return g;
    }

    private void dfs(int i, int j) {
        if (g[i][j] == m * n - 1) {
            ok = true;
            return;
        }
        int[] dirs = {-2, -1, 2, 1, -2, 1, 2, -1, -2};
        for (int k = 0; k < 8; ++k) {
            int x = i + dirs[k], y = j + dirs[k + 1];
            if (x >= 0 && x < m && y >= 0 && y < n && g[x][y] == -1) {
                g[x][y] = g[i][j] + 1;
                dfs(x, y);
                if (ok) {
                    return;
                }
                g[x][y] = -1;
            }
        }
    }
}

C++

class Solution {
public:
    vector<vector<int>> tourOfKnight(int m, int n, int r, int c) {
        vector<vector<int>> g(m, vector<int>(n, -1));
        g[r][c] = 0;
        int dirs[9] = {-2, -1, 2, 1, -2, 1, 2, -1, -2};
        bool ok = false;
        function<void(int, int)> dfs = [&](int i, int j) {
            if (g[i][j] == m * n - 1) {
                ok = true;
                return;
            }
            for (int k = 0; k < 8; ++k) {
                int x = i + dirs[k], y = j + dirs[k + 1];
                if (x >= 0 && x < m && y >= 0 && y < n && g[x][y] == -1) {
                    g[x][y] = g[i][j] + 1;
                    dfs(x, y);
                    if (ok) {
                        return;
                    }
                    g[x][y] = -1;
                }
            }
        };
        dfs(r, c);
        return g;
    }
};

Go

func tourOfKnight(m int, n int, r int, c int) [][]int {
	g := make([][]int, m)
	for i := range g {
		g[i] = make([]int, n)
		for j := range g[i] {
			g[i][j] = -1
		}
	}
	g[r][c] = 0
	ok := false
	var dfs func(i, j int)
	dfs = func(i, j int) {
		if g[i][j] == m*n-1 {
			ok = true
			return
		}
		dirs := []int{-2, -1, 2, 1, -2, 1, 2, -1, -2}
		for k := 0; k < 8; k++ {
			x, y := i+dirs[k], j+dirs[k+1]
			if x >= 0 && x < m && y >= 0 && y < n && g[x][y] == -1 {
				g[x][y] = g[i][j] + 1
				dfs(x, y)
				if ok {
					return
				}
				g[x][y] = -1
			}
		}
	}
	dfs(r, c)
	return g
}

TypeScript

function tourOfKnight(m: number, n: number, r: number, c: number): number[][] {
    const g: number[][] = Array.from({ length: m }, () => Array(n).fill(-1));
    const dirs = [-2, -1, 2, 1, -2, 1, 2, -1, -2];
    let ok = false;
    const dfs = (i: number, j: number) => {
        if (g[i][j] === m * n - 1) {
            ok = true;
            return;
        }
        for (let k = 0; k < 8; ++k) {
            const [x, y] = [i + dirs[k], j + dirs[k + 1]];
            if (x >= 0 && x < m && y >= 0 && y < n && g[x][y] === -1) {
                g[x][y] = g[i][j] + 1;
                dfs(x, y);
                if (ok) {
                    return;
                }
                g[x][y] = -1;
            }
        }
    };
    g[r][c] = 0;
    dfs(r, c);
    return g;
}

Rust

impl Solution {
    pub fn tour_of_knight(m: i32, n: i32, r: i32, c: i32) -> Vec<Vec<i32>> {
        let mut g: Vec<Vec<i32>> = vec![vec![-1; n as usize]; m as usize];
        g[r as usize][c as usize] = 0;
        let dirs: [i32; 9] = [-2, -1, 2, 1, -2, 1, 2, -1, -2];
        let mut ok = false;

        fn dfs(
            i: usize,
            j: usize,
            g: &mut Vec<Vec<i32>>,
            m: i32,
            n: i32,
            dirs: &[i32; 9],
            ok: &mut bool,
        ) {
            if g[i][j] == m * n - 1 {
                *ok = true;
                return;
            }
            for k in 0..8 {
                let x = ((i as i32) + dirs[k]) as usize;
                let y = ((j as i32) + dirs[k + 1]) as usize;
                if x < (m as usize) && y < (n as usize) && g[x][y] == -1 {
                    g[x][y] = g[i][j] + 1;
                    dfs(x, y, g, m, n, dirs, ok);
                    if *ok {
                        return;
                    }
                    g[x][y] = -1;
                }
            }
        }

        dfs(r as usize, c as usize, &mut g, m, n, &dirs, &mut ok);
        g
    }
}