comments | difficulty | edit_url | rating | source | tags | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
true |
Medium |
1940 |
Weekly Contest 352 Q3 |
|
You are given a 0-indexed integer array nums
. A subarray of nums
is called continuous if:
- Let
i
,i + 1
, ...,j
be the indices in the subarray. Then, for each pair of indicesi <= i1, i2 <= j
,0 <= |nums[i1] - nums[i2]| <= 2
.
Return the total number of continuous subarrays.
A subarray is a contiguous non-empty sequence of elements within an array.
Example 1:
Input: nums = [5,4,2,4] Output: 8 Explanation: Continuous subarray of size 1: [5], [4], [2], [4]. Continuous subarray of size 2: [5,4], [4,2], [2,4]. Continuous subarray of size 3: [4,2,4]. Thereare no subarrys of size 4. Total continuous subarrays = 4 + 3 + 1 = 8. It can be shown that there are no more continuous subarrays.
Example 2:
Input: nums = [1,2,3] Output: 6 Explanation: Continuous subarray of size 1: [1], [2], [3]. Continuous subarray of size 2: [1,2], [2,3]. Continuous subarray of size 3: [1,2,3]. Total continuous subarrays = 3 + 2 + 1 = 6.
Constraints:
1 <= nums.length <= 105
1 <= nums[i] <= 109
We can use two pointers,
Iterate through the array
After the iteration, return the answer.
The time complexity is
from sortedcontainers import SortedList
class Solution:
def continuousSubarrays(self, nums: List[int]) -> int:
ans = i = 0
sl = SortedList()
for x in nums:
sl.add(x)
while sl[-1] - sl[0] > 2:
sl.remove(nums[i])
i += 1
ans += len(sl)
return ans
class Solution {
public long continuousSubarrays(int[] nums) {
long ans = 0;
int i = 0, n = nums.length;
TreeMap<Integer, Integer> tm = new TreeMap<>();
for (int j = 0; j < n; ++j) {
tm.merge(nums[j], 1, Integer::sum);
while (tm.lastEntry().getKey() - tm.firstEntry().getKey() > 2) {
tm.merge(nums[i], -1, Integer::sum);
if (tm.get(nums[i]) == 0) {
tm.remove(nums[i]);
}
++i;
}
ans += j - i + 1;
}
return ans;
}
}
class Solution {
public:
long long continuousSubarrays(vector<int>& nums) {
long long ans = 0;
int i = 0, n = nums.size();
multiset<int> s;
for (int j = 0; j < n; ++j) {
s.insert(nums[j]);
while (*s.rbegin() - *s.begin() > 2) {
s.erase(s.find(nums[i++]));
}
ans += j - i + 1;
}
return ans;
}
};
func continuousSubarrays(nums []int) (ans int64) {
i := 0
tm := treemap.NewWithIntComparator()
for j, x := range nums {
if v, ok := tm.Get(x); ok {
tm.Put(x, v.(int)+1)
} else {
tm.Put(x, 1)
}
for {
a, _ := tm.Min()
b, _ := tm.Max()
if b.(int)-a.(int) > 2 {
if v, _ := tm.Get(nums[i]); v.(int) == 1 {
tm.Remove(nums[i])
} else {
tm.Put(nums[i], v.(int)-1)
}
i++
} else {
break
}
}
ans += int64(j - i + 1)
}
return
}