comments | difficulty | edit_url | rating | source | tags | ||
---|---|---|---|---|---|---|---|
true |
Medium |
2029 |
Weekly Contest 353 Q4 |
|
You are given a 0-indexed integer array nums
and a positive integer k
.
You can apply the following operation on the array any number of times:
- Choose any subarray of size
k
from the array and decrease all its elements by1
.
Return true
if you can make all the array elements equal to 0
, or false
otherwise.
A subarray is a contiguous non-empty part of an array.
Example 1:
Input: nums = [2,2,3,1,1,0], k = 3 Output: true Explanation: We can do the following operations: - Choose the subarray [2,2,3]. The resulting array will be nums = [1,1,2,1,1,0]. - Choose the subarray [2,1,1]. The resulting array will be nums = [1,1,1,0,0,0]. - Choose the subarray [1,1,1]. The resulting array will be nums = [0,0,0,0,0,0].
Example 2:
Input: nums = [1,3,1,1], k = 2 Output: false Explanation: It is not possible to make all the array elements equal to 0.
Constraints:
1 <= k <= nums.length <= 105
0 <= nums[i] <= 106
First, let's consider the first element of
- If
$nums[0] = 0$ , we don't need to do anything. - If
$nums[0] > 0$ , we need to operate on$nums[0..k-1]$ for$nums[0]$ times, subtracting$nums[0]$ from all elements in$nums[0..k-1]$ , so$nums[0]$ becomes$0$ .
To perform the add and subtract operations on a contiguous segment of elements simultaneously, we can use a difference array to manage these operations. We represent the difference array with
Therefore, we iterate over
- If
$nums[i] = 0$ , there's no need for any operation, and we can skip directly. - If
$nums[i]=0$ or$i + k > n$ , it indicates that after the previous operations,$nums[i]$ has become negative, or$nums[i..i+k-1]$ is out of bounds. Therefore, it's impossible to make all elements in$nums$ equal to$0$ . We returnfalse
. Otherwise, we need to subtract$nums[i]$ from all elements in the interval$[i..i+k-1]$ . Therefore, we subtract$nums[i]$ from$s$ and add$nums[i]$ to$d[i+k]$ . - We continue to iterate over the next element.
If the iteration ends, it means that all elements in true
.
The time complexity is
class Solution:
def checkArray(self, nums: List[int], k: int) -> bool:
n = len(nums)
d = [0] * (n + 1)
s = 0
for i, x in enumerate(nums):
s += d[i]
x += s
if x == 0:
continue
if x < 0 or i + k > n:
return False
s -= x
d[i + k] += x
return True
class Solution {
public boolean checkArray(int[] nums, int k) {
int n = nums.length;
int[] d = new int[n + 1];
int s = 0;
for (int i = 0; i < n; ++i) {
s += d[i];
nums[i] += s;
if (nums[i] == 0) {
continue;
}
if (nums[i] < 0 || i + k > n) {
return false;
}
s -= nums[i];
d[i + k] += nums[i];
}
return true;
}
}
class Solution {
public:
bool checkArray(vector<int>& nums, int k) {
int n = nums.size();
vector<int> d(n + 1);
int s = 0;
for (int i = 0; i < n; ++i) {
s += d[i];
nums[i] += s;
if (nums[i] == 0) {
continue;
}
if (nums[i] < 0 || i + k > n) {
return false;
}
s -= nums[i];
d[i + k] += nums[i];
}
return true;
}
};
func checkArray(nums []int, k int) bool {
n := len(nums)
d := make([]int, n+1)
s := 0
for i, x := range nums {
s += d[i]
x += s
if x == 0 {
continue
}
if x < 0 || i+k > n {
return false
}
s -= x
d[i+k] += x
}
return true
}
function checkArray(nums: number[], k: number): boolean {
const n = nums.length;
const d: number[] = Array(n + 1).fill(0);
let s = 0;
for (let i = 0; i < n; ++i) {
s += d[i];
nums[i] += s;
if (nums[i] === 0) {
continue;
}
if (nums[i] < 0 || i + k > n) {
return false;
}
s -= nums[i];
d[i + k] += nums[i];
}
return true;
}