Skip to content

Latest commit

 

History

History
252 lines (207 loc) · 8.23 KB

File metadata and controls

252 lines (207 loc) · 8.23 KB
comments difficulty edit_url tags
true
Medium
Tree
Depth-First Search
Breadth-First Search
Binary Tree

中文文档

Description

You are given a root, which is the root of a special binary tree with n nodes. The nodes of the special binary tree are numbered from 1 to n. Suppose the tree has k leaves in the following order: b1 < b2 < ... < bk.

The leaves of this tree have a special property! That is, for every leaf bi, the following conditions hold:

  • The right child of bi is bi + 1 if i < k, and b1 otherwise.
  • The left child of bi is bi - 1 if i > 1, and bk otherwise.

Return the height of the given tree.

Note: The height of a binary tree is the length of the longest path from the root to any other node.

 

Example 1:

Input: root = [1,2,3,null,null,4,5]
Output: 2
Explanation: The given tree is shown in the following picture. Each leaf's left child is the leaf to its left (shown with the blue edges). Each leaf's right child is the leaf to its right (shown with the red edges). We can see that the graph has a height of 2.

Example 2:

Input: root = [1,2]
Output: 1
Explanation: The given tree is shown in the following picture. There is only one leaf, so it doesn't have any left or right child. We can see that the graph has a height of 1.

Example 3:

Input: root = [1,2,3,null,null,4,null,5,6]
Output: 3
Explanation: The given tree is shown in the following picture. Each leaf's left child is the leaf to its left (shown with the blue edges). Each leaf's right child is the leaf to its right (shown with the red edges). We can see that the graph has a height of 3.

 

Constraints:

  • n == number of nodes in the tree
  • 2 <= n <= 104
  • 1 <= node.val <= n
  • The input is generated such that each node.val is unique.

Solutions

Solution 1: DFS

The key to the problem is how to determine whether a node is a leaf node. We design a function $dfs(root, d)$, where $root$ represents the current node, and $d$ represents the depth of the current node. Each time we search, we update the answer $ans = \max(ans, d)$, and then determine whether the current node is a leaf node. If the current node has a left child, and the right child of the left child is not the current node, then we recursively call $dfs(root.left, d + 1)$. If the current node has a right child, and the left child of the right child is not the current node, then we recursively call $dfs(root.right, d + 1)$.

The time complexity is $O(n)$, and the space complexity is $O(n)$. Where $n$ is the number of nodes in the binary tree.

Python3

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def heightOfTree(self, root: Optional[TreeNode]) -> int:
        def dfs(root: Optional[TreeNode], d: int):
            nonlocal ans
            ans = max(ans, d)
            if root.left and root.left.right != root:
                dfs(root.left, d + 1)
            if root.right and root.right.left != root:
                dfs(root.right, d + 1)

        ans = 0
        dfs(root, 0)
        return ans

Java

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    private int ans;

    public int heightOfTree(TreeNode root) {
        dfs(root, 0);
        return ans;
    }

    private void dfs(TreeNode root, int d) {
        ans = Math.max(ans, d++);
        if (root.left != null && root.left.right != root) {
            dfs(root.left, d);
        }
        if (root.right != null && root.right.left != root) {
            dfs(root.right, d);
        }
    }
}

C++

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    int heightOfTree(TreeNode* root) {
        int ans = 0;
        function<void(TreeNode*, int)> dfs = [&](TreeNode* root, int d) {
            ans = max(ans, d++);
            if (root->left && root->left->right != root) {
                dfs(root->left, d);
            }
            if (root->right && root->right->left != root) {
                dfs(root->right, d);
            }
        };
        dfs(root, 0);
        return ans;
    }
};

Go

/**
 * Definition for a binary tree node.
 * type TreeNode struct {
 *     Val int
 *     Left *TreeNode
 *     Right *TreeNode
 * }
 */
func heightOfTree(root *TreeNode) (ans int) {
	var dfs func(*TreeNode, int)
	dfs = func(root *TreeNode, d int) {
		if ans < d {
			ans = d
		}
		d++
		if root.Left != nil && root.Left.Right != root {
			dfs(root.Left, d)
		}
		if root.Right != nil && root.Right.Left != root {
			dfs(root.Right, d)
		}
	}
	dfs(root, 0)
	return
}

TypeScript

/**
 * Definition for a binary tree node.
 * class TreeNode {
 *     val: number
 *     left: TreeNode | null
 *     right: TreeNode | null
 *     constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
 *         this.val = (val===undefined ? 0 : val)
 *         this.left = (left===undefined ? null : left)
 *         this.right = (right===undefined ? null : right)
 *     }
 * }
 */

function heightOfTree(root: TreeNode | null): number {
    let ans = 0;
    const dfs = (root: TreeNode | null, d: number) => {
        ans = Math.max(ans, d++);
        if (root.left && root.left.right !== root) {
            dfs(root.left, d);
        }
        if (root.right && root.right.left !== root) {
            dfs(root.right, d);
        }
    };
    dfs(root, 0);
    return ans;
}