comments | difficulty | edit_url | rating | source | tags | ||
---|---|---|---|---|---|---|---|
true |
Medium |
1409 |
Weekly Contest 360 Q2 |
|
You are given positive integers n
and target
.
An array nums
is beautiful if it meets the following conditions:
nums.length == n
.nums
consists of pairwise distinct positive integers.- There doesn't exist two distinct indices,
i
andj
, in the range[0, n - 1]
, such thatnums[i] + nums[j] == target
.
Return the minimum possible sum that a beautiful array could have modulo 109 + 7
.
Example 1:
Input: n = 2, target = 3 Output: 4 Explanation: We can see that nums = [1,3] is beautiful. - The array nums has length n = 2. - The array nums consists of pairwise distinct positive integers. - There doesn't exist two distinct indices, i and j, with nums[i] + nums[j] == 3. It can be proven that 4 is the minimum possible sum that a beautiful array could have.
Example 2:
Input: n = 3, target = 3 Output: 8 Explanation: We can see that nums = [1,3,4] is beautiful. - The array nums has length n = 3. - The array nums consists of pairwise distinct positive integers. - There doesn't exist two distinct indices, i and j, with nums[i] + nums[j] == 3. It can be proven that 8 is the minimum possible sum that a beautiful array could have.
Example 3:
Input: n = 1, target = 1 Output: 1 Explanation: We can see, that nums = [1] is beautiful.
Constraints:
1 <= n <= 109
1 <= target <= 109
We can greedily construct the array nums
starting from
Let's denote
If
If
Note that we need to take the modulus of
The time complexity is
class Solution:
def minimumPossibleSum(self, n: int, target: int) -> int:
mod = 10**9 + 7
m = target // 2
if n <= m:
return ((1 + n) * n // 2) % mod
return ((1 + m) * m // 2 + (target + target + n - m - 1) * (n - m) // 2) % mod
class Solution {
public int minimumPossibleSum(int n, int target) {
final int mod = (int) 1e9 + 7;
int m = target / 2;
if (n <= m) {
return (int) ((1L + n) * n / 2 % mod);
}
long a = (1L + m) * m / 2 % mod;
long b = ((1L * target + target + n - m - 1) * (n - m) / 2) % mod;
return (int) ((a + b) % mod);
}
}
class Solution {
public:
int minimumPossibleSum(int n, int target) {
const int mod = 1e9 + 7;
int m = target / 2;
if (n <= m) {
return (1LL + n) * n / 2 % mod;
}
long long a = (1LL + m) * m / 2 % mod;
long long b = (1LL * target + target + n - m - 1) * (n - m) / 2 % mod;
return (a + b) % mod;
}
};
func minimumPossibleSum(n int, target int) int {
const mod int = 1e9 + 7
m := target / 2
if n <= m {
return (n + 1) * n / 2 % mod
}
a := (m + 1) * m / 2 % mod
b := (target + target + n - m - 1) * (n - m) / 2 % mod
return (a + b) % mod
}
function minimumPossibleSum(n: number, target: number): number {
const mod = 10 ** 9 + 7;
const m = target >> 1;
if (n <= m) {
return (((1 + n) * n) / 2) % mod;
}
return (((1 + m) * m) / 2 + ((target + target + n - m - 1) * (n - m)) / 2) % mod;
}
public class Solution {
public int MinimumPossibleSum(int n, int target) {
const int mod = (int) 1e9 + 7;
int m = target / 2;
if (n <= m) {
return (int) ((1L + n) * n / 2 % mod);
}
long a = (1L + m) * m / 2 % mod;
long b = ((1L * target + target + n - m - 1) * (n - m) / 2) % mod;
return (int) ((a + b) % mod);
}
}