comments | difficulty | edit_url | rating | source | tags | ||
---|---|---|---|---|---|---|---|
true |
Easy |
1218 |
Weekly Contest 363 Q1 |
|
You are given a 0-indexed integer array nums
and an integer k
.
Return an integer that denotes the sum of elements in nums
whose corresponding indices have exactly k
set bits in their binary representation.
The set bits in an integer are the 1
's present when it is written in binary.
- For example, the binary representation of
21
is10101
, which has3
set bits.
Example 1:
Input: nums = [5,10,1,5,2], k = 1 Output: 13 Explanation: The binary representation of the indices are: 0 = 0002 1 = 0012 2 = 0102 3 = 0112 4 = 1002 Indices 1, 2, and 4 have k = 1 set bits in their binary representation. Hence, the answer is nums[1] + nums[2] + nums[4] = 13.
Example 2:
Input: nums = [4,3,2,1], k = 2 Output: 1 Explanation: The binary representation of the indices are: 0 = 002 1 = 012 2 = 102 3 = 112 Only index 3 has k = 2 set bits in its binary representation. Hence, the answer is nums[3] = 1.
Constraints:
1 <= nums.length <= 1000
1 <= nums[i] <= 105
0 <= k <= 10
We directly traverse each index
After the traversal ends, we return the answer.
The time complexity is
class Solution:
def sumIndicesWithKSetBits(self, nums: List[int], k: int) -> int:
return sum(x for i, x in enumerate(nums) if i.bit_count() == k)
class Solution {
public int sumIndicesWithKSetBits(List<Integer> nums, int k) {
int ans = 0;
for (int i = 0; i < nums.size(); i++) {
if (Integer.bitCount(i) == k) {
ans += nums.get(i);
}
}
return ans;
}
}
class Solution {
public:
int sumIndicesWithKSetBits(vector<int>& nums, int k) {
int ans = 0;
for (int i = 0; i < nums.size(); ++i) {
if (__builtin_popcount(i) == k) {
ans += nums[i];
}
}
return ans;
}
};
func sumIndicesWithKSetBits(nums []int, k int) (ans int) {
for i, x := range nums {
if bits.OnesCount(uint(i)) == k {
ans += x
}
}
return
}
function sumIndicesWithKSetBits(nums: number[], k: number): number {
let ans = 0;
for (let i = 0; i < nums.length; ++i) {
if (bitCount(i) === k) {
ans += nums[i];
}
}
return ans;
}
function bitCount(n: number): number {
let count = 0;
while (n) {
n &= n - 1;
count++;
}
return count;
}