Skip to content

Latest commit

 

History

History
301 lines (249 loc) · 6.94 KB

File metadata and controls

301 lines (249 loc) · 6.94 KB
comments difficulty edit_url tags
true
困难
数组
数学
二分查找
数论

English Version

题目描述

给定一个整数数组 nums 和一个整数 k.

数组 agcd-sum 计算方法如下:

  • 设 s 为 a 的所有元素的和。
  • 设 g 为 a 的所有元素的 最大公约数
  • a 的 gcd-sum 等于 s * g.

返回 nums 的至少包含 k 个元素的子数组的 最大 gcd-sum

 

示例 1:

输入:nums = [2,1,4,4,4,2], k = 2
输出:48
解释:我们选择子数组 [4,4,4],该数组的 gcd-sum 为 4 * (4 + 4 + 4) = 48。
可以证明我们无法选择任何其他 gcd-sum 大于 48 的子数组。

示例 2:

输入:nums = [7,3,9,4], k = 1
输出:81
解释:我们选择子数组 [9],该数组的 gcd-sum 为 9 * 9 = 81。
可以证明我们无法选择任何其他 gcd-sum 大于 81 的子数组。

 

提示:

  • n == nums.length
  • 1 <= n <= 105
  • 1 <= nums[i] <= 106
  • 1 <= k <= n

解法

方法一

Python3

class Solution:
    def maxGcdSum(self, nums: List[int], k: int) -> int:
        s = list(accumulate(nums, initial=0))
        f = []
        ans = 0
        for i, v in enumerate(nums):
            g = []
            for j, x in f:
                y = gcd(x, v)
                if not g or g[-1][1] != y:
                    g.append((j, y))
            f = g
            f.append((i, v))
            for j, x in f:
                if i - j + 1 >= k:
                    ans = max(ans, (s[i + 1] - s[j]) * x)
        return ans

Java

class Solution {
    public long maxGcdSum(int[] nums, int k) {
        int n = nums.length;
        long[] s = new long[n + 1];
        for (int i = 1; i <= n; ++i) {
            s[i] = s[i - 1] + nums[i - 1];
        }
        List<int[]> f = new ArrayList<>();
        long ans = 0;
        for (int i = 0; i < n; ++i) {
            List<int[]> g = new ArrayList<>();
            for (var e : f) {
                int j = e[0], x = e[1];
                int y = gcd(x, nums[i]);
                if (g.isEmpty() || g.get(g.size() - 1)[1] != y) {
                    g.add(new int[] {j, y});
                }
            }
            f = g;
            f.add(new int[] {i, nums[i]});
            for (var e : f) {
                int j = e[0], x = e[1];
                if (i - j + 1 >= k) {
                    ans = Math.max(ans, (s[i + 1] - s[j]) * x);
                }
            }
        }
        return ans;
    }

    private int gcd(int a, int b) {
        return b == 0 ? a : gcd(b, a % b);
    }
}

C++

class Solution {
public:
    long long maxGcdSum(vector<int>& nums, int k) {
        int n = nums.size();
        long long s[n + 1];
        s[0] = 0;
        for (int i = 1; i <= n; ++i) {
            s[i] = s[i - 1] + nums[i - 1];
        }
        vector<pair<int, int>> f;
        long long ans = 0;
        for (int i = 0; i < n; ++i) {
            vector<pair<int, int>> g;
            for (auto [j, x] : f) {
                int y = gcd(x, nums[i]);
                if (g.empt() || g.back().second != y) {
                    g.emplace_back(j, y);
                }
            }
            f = move(g);
            f.emplace_back(i, nums[i]);
            for (auto [j, x] : f) {
                if (i - j + 1 >= k) {
                    ans = max(ans, (s[i + 1] - s[j]) * x);
                }
            }
        }
        return ans;
    }
};

Go

func maxGcdSum(nums []int, k int) int64 {
	n := len(nums)
	s := make([]int64, n+1)
	s[0] = 0
	for i, x := range nums {
		s[i+1] = s[i] + int64(x)
	}
	type pair [2]int
	var f []pair
	var ans int64
	for i := 0; i < n; i++ {
		var g []pair
		for _, p := range f {
			j, x := p[0], p[1]
			y := int(gcd(int(x), nums[i]))
			if len(g) == 0 || g[len(g)-1][1] != y {
				g = append(g, pair{j, y})
			}
		}
		f = g
		f = append(f, pair{i, nums[i]})
		for _, p := range f {
			j, x := p[0], p[1]
			if i-j+1 >= k {
				ans = max(ans, (s[i+1]-s[j])*int64(x))
			}
		}
	}
	return ans
}

func gcd(a, b int) int {
	if b == 0 {
		return a
	}
	return gcd(b, a%b)
}

TypeScript

function maxGcdSum(nums: number[], k: number): number {
    const n: number = nums.length;
    const s: number[] = Array(n + 1).fill(0);
    for (let i = 1; i <= n; i++) {
        s[i] = s[i - 1] + nums[i - 1];
    }

    let f: [number, number][] = [];
    let ans: number = 0;

    for (let i = 0; i < n; ++i) {
        const g: [number, number][] = [];
        for (const [j, x] of f) {
            const y: number = gcd(x, nums[i]);
            if (g.length === 0 || g.at(-1)[1] !== y) {
                g.push([j, y]);
            }
        }
        f = g;
        f.push([i, nums[i]]);
        for (const [j, x] of f) {
            if (i - j + 1 >= k) {
                ans = Math.max(ans, (s[i + 1] - s[j]) * x);
            }
        }
    }

    return ans;
}

function gcd(a: number, b: number): number {
    return b === 0 ? a : gcd(b, a % b);
}

方法二

TypeScript

function maxGcdSum(nums: number[], k: number): number {
    const n: number = nums.length;
    const s: number[] = Array(n + 1).fill(0);
    for (let i = 1; i <= n; i++) {
        s[i] = s[i - 1] + nums[i - 1];
    }

    let f: [number, number][] = [];
    let ans: number = 0;

    for (let i = 0; i < n; ++i) {
        const g: [number, number][] = [];
        for (const [j, x] of f) {
            const y: number = gcd(x, nums[i]);
            if (g.length === 0 || g.at(-1)[1] !== y) {
                g.push([j, y]);
            }
        }
        f = g;
        f.push([i, nums[i]]);
        for (const [j, x] of f) {
            if (i - j + 1 >= k) {
                ans = Math.max(ans, (s[i + 1] - s[j]) * x);
            }
        }
    }

    return ans;
}

function gcd(a: number, b: number): number {
    return b === 0 ? a : gcd(b, a % b);
}