Skip to content

Latest commit

 

History

History
206 lines (158 loc) · 5.64 KB

File metadata and controls

206 lines (158 loc) · 5.64 KB
comments difficulty edit_url rating source tags
true
Easy
1405
Weekly Contest 373 Q1
Array
Math
Matrix
Simulation

中文文档

Description

You are given an m x n integer matrix mat and an integer k. The matrix rows are 0-indexed.

The following proccess happens k times:

  • Even-indexed rows (0, 2, 4, ...) are cyclically shifted to the left.

  • Odd-indexed rows (1, 3, 5, ...) are cyclically shifted to the right.

Return true if the final modified matrix after k steps is identical to the original matrix, and false otherwise.

 

Example 1:

Input: mat = [[1,2,3],[4,5,6],[7,8,9]], k = 4

Output: false

Explanation:

In each step left shift is applied to rows 0 and 2 (even indices), and right shift to row 1 (odd index).

Example 2:

Input: mat = [[1,2,1,2],[5,5,5,5],[6,3,6,3]], k = 2

Output: true

Explanation:

Example 3:

Input: mat = [[2,2],[2,2]], k = 3

Output: true

Explanation:

As all the values are equal in the matrix, even after performing cyclic shifts the matrix will remain the same.

 

Constraints:

  • 1 <= mat.length <= 25
  • 1 <= mat[i].length <= 25
  • 1 <= mat[i][j] <= 25
  • 1 <= k <= 50

Solutions

Solution 1

Python3

class Solution:
    def areSimilar(self, mat: List[List[int]], k: int) -> bool:
        n = len(mat[0])
        for i, row in enumerate(mat):
            for j, x in enumerate(row):
                if i % 2 == 1 and x != mat[i][(j + k) % n]:
                    return False
                if i % 2 == 0 and x != mat[i][(j - k + n) % n]:
                    return False
        return True

Java

class Solution {
    public boolean areSimilar(int[][] mat, int k) {
        int m = mat.length, n = mat[0].length;
        k %= n;
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                if (i % 2 == 1 && mat[i][j] != mat[i][(j + k) % n]) {
                    return false;
                }
                if (i % 2 == 0 && mat[i][j] != mat[i][(j - k + n) % n]) {
                    return false;
                }
            }
        }
        return true;
    }
}

C++

class Solution {
public:
    bool areSimilar(vector<vector<int>>& mat, int k) {
        int m = mat.size(), n = mat[0].size();
        k %= n;
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                if (i % 2 == 1 && mat[i][j] != mat[i][(j + k) % n]) {
                    return false;
                }
                if (i % 2 == 0 && mat[i][j] != mat[i][(j - k + n) % n]) {
                    return false;
                }
            }
        }
        return true;
    }
};

Go

func areSimilar(mat [][]int, k int) bool {
	n := len(mat[0])
	k %= n
	for i, row := range mat {
		for j, x := range row {
			if i%2 == 1 && x != mat[i][(j+k)%n] {
				return false
			}
			if i%2 == 0 && x != mat[i][(j-k+n)%n] {
				return false
			}
		}
	}
	return true
}

TypeScript

function areSimilar(mat: number[][], k: number): boolean {
    const m = mat.length;
    const n = mat[0].length;
    k %= n;
    for (let i = 0; i < m; ++i) {
        for (let j = 0; j < n; ++j) {
            if (i % 2 === 1 && mat[i][j] !== mat[i][(j + k) % n]) {
                return false;
            }
            if (i % 2 === 0 && mat[i][j] !== mat[i][(j - k + n) % n]) {
                return false;
            }
        }
    }
    return true;
}