comments | difficulty | edit_url | rating | source | tags | |||||
---|---|---|---|---|---|---|---|---|---|---|
true |
Medium |
2116 |
Weekly Contest 376 Q3 |
|
You are given a 0-indexed integer array nums
having length n
.
You are allowed to perform a special move any number of times (including zero) on nums
. In one special move you perform the following steps in order:
- Choose an index
i
in the range[0, n - 1]
, and a positive integerx
. - Add
|nums[i] - x|
to the total cost. - Change the value of
nums[i]
tox
.
A palindromic number is a positive integer that remains the same when its digits are reversed. For example, 121
, 2552
and 65756
are palindromic numbers whereas 24
, 46
, 235
are not palindromic numbers.
An array is considered equalindromic if all the elements in the array are equal to an integer y
, where y
is a palindromic number less than 109
.
Return an integer denoting the minimum possible total cost to make nums
equalindromic by performing any number of special moves.
Example 1:
Input: nums = [1,2,3,4,5] Output: 6 Explanation: We can make the array equalindromic by changing all elements to 3 which is a palindromic number. The cost of changing the array to [3,3,3,3,3] using 4 special moves is given by |1 - 3| + |2 - 3| + |4 - 3| + |5 - 3| = 6. It can be shown that changing all elements to any palindromic number other than 3 cannot be achieved at a lower cost.
Example 2:
Input: nums = [10,12,13,14,15] Output: 11 Explanation: We can make the array equalindromic by changing all elements to 11 which is a palindromic number. The cost of changing the array to [11,11,11,11,11] using 5 special moves is given by |10 - 11| + |12 - 11| + |13 - 11| + |14 - 11| + |15 - 11| = 11. It can be shown that changing all elements to any palindromic number other than 11 cannot be achieved at a lower cost.
Example 3:
Input: nums = [22,33,22,33,22] Output: 22 Explanation: We can make the array equalindromic by changing all elements to 22 which is a palindromic number. The cost of changing the array to [22,22,22,22,22] using 2 special moves is given by |33 - 22| + |33 - 22| = 22. It can be shown that changing all elements to any palindromic number other than 22 cannot be achieved at a lower cost.
Constraints:
1 <= n <= 105
1 <= nums[i] <= 109
The range of palindrome numbers in the problem is
Next, we sort the array
The time complexity is
Similar problems:
ps = []
for i in range(1, 10**5 + 1):
s = str(i)
t1 = s[::-1]
t2 = s[:-1][::-1]
ps.append(int(s + t1))
ps.append(int(s + t2))
ps.sort()
class Solution:
def minimumCost(self, nums: List[int]) -> int:
def f(x: int) -> int:
return sum(abs(v - x) for v in nums)
nums.sort()
i = bisect_left(ps, nums[len(nums) // 2])
return min(f(ps[j]) for j in range(i - 1, i + 2) if 0 <= j < len(ps))
public class Solution {
private static long[] ps;
private int[] nums;
static {
ps = new long[2 * (int) 1e5];
for (int i = 1; i <= 1e5; i++) {
String s = Integer.toString(i);
String t1 = new StringBuilder(s).reverse().toString();
String t2 = new StringBuilder(s.substring(0, s.length() - 1)).reverse().toString();
ps[2 * i - 2] = Long.parseLong(s + t1);
ps[2 * i - 1] = Long.parseLong(s + t2);
}
Arrays.sort(ps);
}
public long minimumCost(int[] nums) {
this.nums = nums;
Arrays.sort(nums);
int i = Arrays.binarySearch(ps, nums[nums.length / 2]);
i = i < 0 ? -i - 1 : i;
long ans = 1L << 60;
for (int j = i - 1; j <= i + 1; j++) {
if (0 <= j && j < ps.length) {
ans = Math.min(ans, f(ps[j]));
}
}
return ans;
}
private long f(long x) {
long ans = 0;
for (int v : nums) {
ans += Math.abs(v - x);
}
return ans;
}
}
using ll = long long;
ll ps[2 * 100000];
int init = [] {
for (int i = 1; i <= 100000; i++) {
string s = to_string(i);
string t1 = s;
reverse(t1.begin(), t1.end());
string t2 = s.substr(0, s.length() - 1);
reverse(t2.begin(), t2.end());
ps[2 * i - 2] = stoll(s + t1);
ps[2 * i - 1] = stoll(s + t2);
}
sort(ps, ps + 2 * 100000);
return 0;
}();
class Solution {
public:
long long minimumCost(vector<int>& nums) {
sort(nums.begin(), nums.end());
int i = lower_bound(ps, ps + 2 * 100000, nums[nums.size() / 2]) - ps;
auto f = [&](ll x) {
ll ans = 0;
for (int& v : nums) {
ans += abs(v - x);
}
return ans;
};
ll ans = LLONG_MAX;
for (int j = i - 1; j <= i + 1; j++) {
if (0 <= j && j < 2 * 100000) {
ans = min(ans, f(ps[j]));
}
}
return ans;
}
};
var ps [2 * 100000]int64
func init() {
for i := 1; i <= 100000; i++ {
s := strconv.Itoa(i)
t1 := reverseString(s)
t2 := reverseString(s[:len(s)-1])
ps[2*i-2], _ = strconv.ParseInt(s+t1, 10, 64)
ps[2*i-1], _ = strconv.ParseInt(s+t2, 10, 64)
}
sort.Slice(ps[:], func(i, j int) bool {
return ps[i] < ps[j]
})
}
func reverseString(s string) string {
cs := []rune(s)
for i, j := 0, len(cs)-1; i < j; i, j = i+1, j-1 {
cs[i], cs[j] = cs[j], cs[i]
}
return string(cs)
}
func minimumCost(nums []int) int64 {
sort.Ints(nums)
i := sort.Search(len(ps), func(i int) bool {
return ps[i] >= int64(nums[len(nums)/2])
})
f := func(x int64) int64 {
var ans int64
for _, v := range nums {
ans += int64(abs(int(x - int64(v))))
}
return ans
}
ans := int64(math.MaxInt64)
for j := i - 1; j <= i+1; j++ {
if 0 <= j && j < len(ps) {
ans = min(ans, f(ps[j]))
}
}
return ans
}
func abs(x int) int {
if x < 0 {
return -x
}
return x
}
const ps = Array(2e5).fill(0);
const init = (() => {
for (let i = 1; i <= 1e5; ++i) {
const s: string = i.toString();
const t1: string = s.split('').reverse().join('');
const t2: string = s.slice(0, -1).split('').reverse().join('');
ps[2 * i - 2] = parseInt(s + t1, 10);
ps[2 * i - 1] = parseInt(s + t2, 10);
}
ps.sort((a, b) => a - b);
})();
function minimumCost(nums: number[]): number {
const search = (x: number): number => {
let [l, r] = [0, ps.length];
while (l < r) {
const mid = (l + r) >> 1;
if (ps[mid] >= x) {
r = mid;
} else {
l = mid + 1;
}
}
return l;
};
const f = (x: number): number => {
return nums.reduce((acc, v) => acc + Math.abs(v - x), 0);
};
nums.sort((a, b) => a - b);
const i: number = search(nums[nums.length >> 1]);
let ans: number = Number.MAX_SAFE_INTEGER;
for (let j = i - 1; j <= i + 1; j++) {
if (j >= 0 && j < ps.length) {
ans = Math.min(ans, f(ps[j]));
}
}
return ans;
}