Skip to content

Latest commit

 

History

History
303 lines (250 loc) · 8.98 KB

File metadata and controls

303 lines (250 loc) · 8.98 KB
comments difficulty edit_url rating source tags
true
Hard
3039
Weekly Contest 379 Q4
Bit Manipulation
String
Dynamic Programming
Bitmask

中文文档

Description

You are given a string s and an integer k.

First, you are allowed to change at most one index in s to another lowercase English letter.

After that, do the following partitioning operation until s is empty:

  • Choose the longest prefix of s containing at most k distinct characters.
  • Delete the prefix from s and increase the number of partitions by one. The remaining characters (if any) in s maintain their initial order.

Return an integer denoting the maximum number of resulting partitions after the operations by optimally choosing at most one index to change.

 

Example 1:

Input: s = "accca", k = 2

Output: 3

Explanation:

The optimal way is to change s[2] to something other than a and c, for example, b. then it becomes "acbca".

Then we perform the operations:

  1. The longest prefix containing at most 2 distinct characters is "ac", we remove it and s becomes "bca".
  2. Now The longest prefix containing at most 2 distinct characters is "bc", so we remove it and s becomes "a".
  3. Finally, we remove "a" and s becomes empty, so the procedure ends.

Doing the operations, the string is divided into 3 partitions, so the answer is 3.

Example 2:

Input: s = "aabaab", k = 3

Output: 1

Explanation:

Initially s contains 2 distinct characters, so whichever character we change, it will contain at most 3 distinct characters, so the longest prefix with at most 3 distinct characters would always be all of it, therefore the answer is 1.

Example 3:

Input: s = "xxyz", k = 1

Output: 4

Explanation:

The optimal way is to change s[0] or s[1] to something other than characters in s, for example, to change s[0] to w.

Then s becomes "wxyz", which consists of 4 distinct characters, so as k is 1, it will divide into 4 partitions.

 

Constraints:

  • 1 <= s.length <= 104
  • s consists only of lowercase English letters.
  • 1 <= k <= 26

Solutions

Solution 1

Python3

class Solution:
    def maxPartitionsAfterOperations(self, s: str, k: int) -> int:
        @cache
        def dfs(i: int, cur: int, t: int) -> int:
            if i >= n:
                return 1
            v = 1 << (ord(s[i]) - ord("a"))
            nxt = cur | v
            if nxt.bit_count() > k:
                ans = dfs(i + 1, v, t) + 1
            else:
                ans = dfs(i + 1, nxt, t)
            if t:
                for j in range(26):
                    nxt = cur | (1 << j)
                    if nxt.bit_count() > k:
                        ans = max(ans, dfs(i + 1, 1 << j, 0) + 1)
                    else:
                        ans = max(ans, dfs(i + 1, nxt, 0))
            return ans

        n = len(s)
        return dfs(0, 0, 1)

Java

class Solution {
    private Map<List<Integer>, Integer> f = new HashMap<>();
    private String s;
    private int k;

    public int maxPartitionsAfterOperations(String s, int k) {
        this.s = s;
        this.k = k;
        return dfs(0, 0, 1);
    }

    private int dfs(int i, int cur, int t) {
        if (i >= s.length()) {
            return 1;
        }
        var key = List.of(i, cur, t);
        if (f.containsKey(key)) {
            return f.get(key);
        }
        int v = 1 << (s.charAt(i) - 'a');
        int nxt = cur | v;
        int ans = Integer.bitCount(nxt) > k ? dfs(i + 1, v, t) + 1 : dfs(i + 1, nxt, t);
        if (t > 0) {
            for (int j = 0; j < 26; ++j) {
                nxt = cur | (1 << j);
                if (Integer.bitCount(nxt) > k) {
                    ans = Math.max(ans, dfs(i + 1, 1 << j, 0) + 1);
                } else {
                    ans = Math.max(ans, dfs(i + 1, nxt, 0));
                }
            }
        }
        f.put(key, ans);
        return ans;
    }
}

C++

class Solution {
public:
    int maxPartitionsAfterOperations(string s, int k) {
        int n = s.size();
        unordered_map<long long, int> f;
        function<int(int, int, int)> dfs = [&](int i, int cur, int t) {
            if (i >= n) {
                return 1;
            }
            long long key = (long long) i << 32 | cur << 1 | t;
            if (f.count(key)) {
                return f[key];
            }
            int v = 1 << (s[i] - 'a');
            int nxt = cur | v;
            int ans = __builtin_popcount(nxt) > k ? dfs(i + 1, v, t) + 1 : dfs(i + 1, nxt, t);
            if (t) {
                for (int j = 0; j < 26; ++j) {
                    nxt = cur | (1 << j);
                    if (__builtin_popcount(nxt) > k) {
                        ans = max(ans, dfs(i + 1, 1 << j, 0) + 1);
                    } else {
                        ans = max(ans, dfs(i + 1, nxt, 0));
                    }
                }
            }
            return f[key] = ans;
        };
        return dfs(0, 0, 1);
    }
};

Go

func maxPartitionsAfterOperations(s string, k int) int {
	n := len(s)
	type tuple struct{ i, cur, t int }
	f := map[tuple]int{}
	var dfs func(i, cur, t int) int
	dfs = func(i, cur, t int) int {
		if i >= n {
			return 1
		}
		key := tuple{i, cur, t}
		if v, ok := f[key]; ok {
			return v
		}
		v := 1 << (s[i] - 'a')
		nxt := cur | v
		var ans int
		if bits.OnesCount(uint(nxt)) > k {
			ans = dfs(i+1, v, t) + 1
		} else {
			ans = dfs(i+1, nxt, t)
		}
		if t > 0 {
			for j := 0; j < 26; j++ {
				nxt = cur | (1 << j)
				if bits.OnesCount(uint(nxt)) > k {
					ans = max(ans, dfs(i+1, 1<<j, 0)+1)
				} else {
					ans = max(ans, dfs(i+1, nxt, 0))
				}
			}
		}
		f[key] = ans
		return ans
	}
	return dfs(0, 0, 1)
}

TypeScript

function maxPartitionsAfterOperations(s: string, k: number): number {
    const n = s.length;
    const f: Map<bigint, number> = new Map();
    const dfs = (i: number, cur: number, t: number): number => {
        if (i >= n) {
            return 1;
        }
        const key = (BigInt(i) << 27n) | (BigInt(cur) << 1n) | BigInt(t);
        if (f.has(key)) {
            return f.get(key)!;
        }
        const v = 1 << (s.charCodeAt(i) - 97);
        let nxt = cur | v;
        let ans = 0;
        if (bitCount(nxt) > k) {
            ans = dfs(i + 1, v, t) + 1;
        } else {
            ans = dfs(i + 1, nxt, t);
        }
        if (t) {
            for (let j = 0; j < 26; ++j) {
                nxt = cur | (1 << j);
                if (bitCount(nxt) > k) {
                    ans = Math.max(ans, dfs(i + 1, 1 << j, 0) + 1);
                } else {
                    ans = Math.max(ans, dfs(i + 1, nxt, 0));
                }
            }
        }
        f.set(key, ans);
        return ans;
    };
    return dfs(0, 0, 1);
}

function bitCount(i: number): number {
    i = i - ((i >>> 1) & 0x55555555);
    i = (i & 0x33333333) + ((i >>> 2) & 0x33333333);
    i = (i + (i >>> 4)) & 0x0f0f0f0f;
    i = i + (i >>> 8);
    i = i + (i >>> 16);
    return i & 0x3f;
}