comments | difficulty | edit_url | rating | source | tags | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
true |
Hard |
2267 |
Biweekly Contest 125 Q4 |
|
There exists an undirected tree with n
nodes numbered 0
to n - 1
. You are given a 0-indexed 2D integer array edges
of length n - 1
, where edges[i] = [ui, vi]
indicates that there is an edge between nodes ui
and vi
in the tree. You are also given a positive integer k
, and a 0-indexed array of non-negative integers nums
of length n
, where nums[i]
represents the value of the node numbered i
.
Alice wants the sum of values of tree nodes to be maximum, for which Alice can perform the following operation any number of times (including zero) on the tree:
- Choose any edge
[u, v]
connecting the nodesu
andv
, and update their values as follows:<ul> <li><code>nums[u] = nums[u] XOR k</code></li> <li><code>nums[v] = nums[v] XOR k</code></li> </ul> </li>
Return the maximum possible sum of the values Alice can achieve by performing the operation any number of times.
Example 1:
Input: nums = [1,2,1], k = 3, edges = [[0,1],[0,2]] Output: 6 Explanation: Alice can achieve the maximum sum of 6 using a single operation: - Choose the edge [0,2]. nums[0] and nums[2] become: 1 XOR 3 = 2, and the array nums becomes: [1,2,1] -> [2,2,2]. The total sum of values is 2 + 2 + 2 = 6. It can be shown that 6 is the maximum achievable sum of values.
Example 2:
Input: nums = [2,3], k = 7, edges = [[0,1]] Output: 9 Explanation: Alice can achieve the maximum sum of 9 using a single operation: - Choose the edge [0,1]. nums[0] becomes: 2 XOR 7 = 5 and nums[1] become: 3 XOR 7 = 4, and the array nums becomes: [2,3] -> [5,4]. The total sum of values is 5 + 4 = 9. It can be shown that 9 is the maximum achievable sum of values.
Example 3:
Input: nums = [7,7,7,7,7,7], k = 3, edges = [[0,1],[0,2],[0,3],[0,4],[0,5]] Output: 42 Explanation: The maximum achievable sum is 42 which can be achieved by Alice performing no operations.
Constraints:
2 <= n == nums.length <= 2 * 104
1 <= k <= 109
0 <= nums[i] <= 109
edges.length == n - 1
edges[i].length == 2
0 <= edges[i][0], edges[i][1] <= n - 1
- The input is generated such that
edges
represent a valid tree.
For any number
Additionally, no matter how many operations are performed, there will always be an even number of elements XORed with
Thus, the problem is transformed into: for the array
We can use dynamic programming to solve this problem. Let
where
We traverse the array
The time complexity is
class Solution:
def maximumValueSum(self, nums: List[int], k: int, edges: List[List[int]]) -> int:
f0, f1 = 0, -inf
for x in nums:
f0, f1 = max(f0 + x, f1 + (x ^ k)), max(f1 + x, f0 + (x ^ k))
return f0
class Solution {
public long maximumValueSum(int[] nums, int k, int[][] edges) {
long f0 = 0, f1 = -0x3f3f3f3f;
for (int x : nums) {
long tmp = f0;
f0 = Math.max(f0 + x, f1 + (x ^ k));
f1 = Math.max(f1 + x, tmp + (x ^ k));
}
return f0;
}
}
class Solution {
public:
long long maximumValueSum(vector<int>& nums, int k, vector<vector<int>>& edges) {
long long f0 = 0, f1 = -0x3f3f3f3f;
for (int x : nums) {
long long tmp = f0;
f0 = max(f0 + x, f1 + (x ^ k));
f1 = max(f1 + x, tmp + (x ^ k));
}
return f0;
}
};
func maximumValueSum(nums []int, k int, edges [][]int) int64 {
f0, f1 := 0, -0x3f3f3f3f
for _, x := range nums {
f0, f1 = max(f0+x, f1+(x^k)), max(f1+x, f0+(x^k))
}
return int64(f0)
}
function maximumValueSum(nums: number[], k: number, edges: number[][]): number {
let [f0, f1] = [0, -Infinity];
for (const x of nums) {
[f0, f1] = [Math.max(f0 + x, f1 + (x ^ k)), Math.max(f1 + x, f0 + (x ^ k))];
}
return f0;
}
impl Solution {
pub fn maximum_value_sum(nums: Vec<i32>, k: i32, edges: Vec<Vec<i32>>) -> i64 {
let mut f0: i64 = 0;
let mut f1: i64 = i64::MIN;
for &x in &nums {
let tmp = f0;
f0 = std::cmp::max(f0 + x as i64, f1 + (x ^ k) as i64);
f1 = std::cmp::max(f1 + x as i64, tmp + (x ^ k) as i64);
}
f0
}
}
public class Solution {
public long MaximumValueSum(int[] nums, int k, int[][] edges) {
long f0 = 0, f1 = -0x3f3f3f3f;
foreach (int x in nums) {
long tmp = f0;
f0 = Math.Max(f0 + x, f1 + (x ^ k));
f1 = Math.Max(f1 + x, tmp + (x ^ k));
}
return f0;
}
}