comments | difficulty | edit_url | rating | source | tags | |||
---|---|---|---|---|---|---|---|---|
true |
Medium |
1517 |
Biweekly Contest 131 Q3 |
|
You are given an integer limit
and a 2D array queries
of size n x 2
.
There are limit + 1
balls with distinct labels in the range [0, limit]
. Initially, all balls are uncolored. For every query in queries
that is of the form [x, y]
, you mark ball x
with the color y
. After each query, you need to find the number of distinct colors among the balls.
Return an array result
of length n
, where result[i]
denotes the number of distinct colors after ith
query.
Note that when answering a query, lack of a color will not be considered as a color.
Example 1:
Input: limit = 4, queries = [[1,4],[2,5],[1,3],[3,4]]
Output: [1,2,2,3]
Explanation:
- After query 0, ball 1 has color 4.
- After query 1, ball 1 has color 4, and ball 2 has color 5.
- After query 2, ball 1 has color 3, and ball 2 has color 5.
- After query 3, ball 1 has color 3, ball 2 has color 5, and ball 3 has color 4.
Example 2:
Input: limit = 4, queries = [[0,1],[1,2],[2,2],[3,4],[4,5]]
Output: [1,2,2,3,4]
Explanation:
- After query 0, ball 0 has color 1.
- After query 1, ball 0 has color 1, and ball 1 has color 2.
- After query 2, ball 0 has color 1, and balls 1 and 2 have color 2.
- After query 3, ball 0 has color 1, balls 1 and 2 have color 2, and ball 3 has color 4.
- After query 4, ball 0 has color 1, balls 1 and 2 have color 2, ball 3 has color 4, and ball 4 has color 5.
Constraints:
1 <= limit <= 109
1 <= n == queries.length <= 105
queries[i].length == 2
0 <= queries[i][0] <= limit
1 <= queries[i][1] <= 109
We use a hash table g
to record the color of each ball, and another hash table cnt
to record the count of each color.
Next, we traverse the array queries
. For each query cnt
. Then, we update the color of ball cnt
to the answer array.
After the traversal, we return the answer array.
The time complexity is queries
.
class Solution:
def queryResults(self, limit: int, queries: List[List[int]]) -> List[int]:
g = {}
cnt = Counter()
ans = []
for x, y in queries:
cnt[y] += 1
if x in g:
cnt[g[x]] -= 1
if cnt[g[x]] == 0:
cnt.pop(g[x])
g[x] = y
ans.append(len(cnt))
return ans
class Solution {
public int[] queryResults(int limit, int[][] queries) {
Map<Integer, Integer> g = new HashMap<>();
Map<Integer, Integer> cnt = new HashMap<>();
int m = queries.length;
int[] ans = new int[m];
for (int i = 0; i < m; ++i) {
int x = queries[i][0], y = queries[i][1];
cnt.merge(y, 1, Integer::sum);
if (g.containsKey(x) && cnt.merge(g.get(x), -1, Integer::sum) == 0) {
cnt.remove(g.get(x));
}
g.put(x, y);
ans[i] = cnt.size();
}
return ans;
}
}
class Solution {
public:
vector<int> queryResults(int limit, vector<vector<int>>& queries) {
unordered_map<int, int> g;
unordered_map<int, int> cnt;
vector<int> ans;
for (auto& q : queries) {
int x = q[0], y = q[1];
cnt[y]++;
if (g.contains(x) && --cnt[g[x]] == 0) {
cnt.erase(g[x]);
}
g[x] = y;
ans.push_back(cnt.size());
}
return ans;
}
};
func queryResults(limit int, queries [][]int) (ans []int) {
g := map[int]int{}
cnt := map[int]int{}
for _, q := range queries {
x, y := q[0], q[1]
cnt[y]++
if v, ok := g[x]; ok {
cnt[v]--
if cnt[v] == 0 {
delete(cnt, v)
}
}
g[x] = y
ans = append(ans, len(cnt))
}
return
}
function queryResults(limit: number, queries: number[][]): number[] {
const g = new Map<number, number>();
const cnt = new Map<number, number>();
const ans: number[] = [];
for (const [x, y] of queries) {
cnt.set(y, (cnt.get(y) ?? 0) + 1);
if (g.has(x)) {
const v = g.get(x)!;
cnt.set(v, cnt.get(v)! - 1);
if (cnt.get(v) === 0) {
cnt.delete(v);
}
}
g.set(x, y);
ans.push(cnt.size);
}
return ans;
}