Skip to content

Latest commit

 

History

History
206 lines (160 loc) · 6.87 KB

File metadata and controls

206 lines (160 loc) · 6.87 KB
comments difficulty edit_url tags
true
中等
位运算
数组

English Version

题目描述

给你一个长度为 n 的质数数组 nums 。你的任务是返回一个长度为 n 的数组 ans ,对于每个下标 i ,以下 条件 均成立:

  • ans[i] OR (ans[i] + 1) == nums[i]

除此以外,你需要 最小化 结果数组里每一个 ans[i] 。

如果没法找到符合 条件 的 ans[i] ,那么 ans[i] = -1 。

质数 指的是一个大于 1 的自然数,且它只有 1 和自己两个因数。

 

示例 1:

输入:nums = [2,3,5,7]

输出:[-1,1,4,3]

解释:

  • 对于 i = 0 ,不存在 ans[0] 满足 ans[0] OR (ans[0] + 1) = 2 ,所以 ans[0] = -1 。
  • 对于 i = 1 ,满足 ans[1] OR (ans[1] + 1) = 3 的最小 ans[1] 为 1 ,因为 1 OR (1 + 1) = 3 。
  • 对于 i = 2 ,满足 ans[2] OR (ans[2] + 1) = 5 的最小 ans[2] 为 4 ,因为 4 OR (4 + 1) = 5 。
  • 对于 i = 3 ,满足 ans[3] OR (ans[3] + 1) = 7 的最小 ans[3] 为 3 ,因为 3 OR (3 + 1) = 7 。

示例 2:

输入:nums = [11,13,31]

输出:[9,12,15]

解释:

  • 对于 i = 0 ,满足 ans[0] OR (ans[0] + 1) = 11 的最小 ans[0] 为 9 ,因为 9 OR (9 + 1) = 11 。
  • 对于 i = 1 ,满足 ans[1] OR (ans[1] + 1) = 13 的最小 ans[1] 为 12 ,因为 12 OR (12 + 1) = 13 。
  • 对于 i = 2 ,满足 ans[2] OR (ans[2] + 1) = 31 的最小 ans[2] 为 15 ,因为 15 OR (15 + 1) = 31 。

 

提示:

  • 1 <= nums.length <= 100
  • 2 <= nums[i] <= 109
  • nums[i] 是一个质数。

解法

方法一:位运算

对于一个整数 $a$,满足 $a \lor (a + 1)$ 的结果一定为奇数,因此,如果 $\text{nums[i]}$ 是偶数,那么 $\text{ans}[i]$ 一定不存在,直接返回 $-1$。本题中 $\textit{nums}[i]$ 是质数,判断是否是偶数,只需要判断是否等于 $2$ 即可。

如果 $\text{nums[i]}$ 是奇数,假设 $\text{nums[i]} = \text{0b1101101}$,由于 $a \lor (a + 1) = \text{nums[i]}$,等价于将 $a$ 的最后一个为 $0$ 的二进制位变为 $1$。那么求解 $a$,就等价于将 $\text{nums[i]}$ 的最后一个 $0$ 的下一位 $1$ 变为 $0$。我们只需要从低位(下标为 $1$)开始遍历,找到第一个为 $0$ 的二进制位,如果是第 $i$ 位,那么我们就将 $\text{nums[i]}$ 的第 $i - 1$ 位变为 $1$,即 $\text{ans}[i] = \text{nums[i]} \oplus 2^{i - 1}$

遍历所有的 $\text{nums[i]}$,即可得到答案。

时间复杂度 $O(n \times \log M)$,其中 $n$$M$ 分别是数组 $\text{nums}$ 的长度和数组中的最大值。忽略答案数组的空间消耗,空间复杂度 $O(1)$

Python3

class Solution:
    def minBitwiseArray(self, nums: List[int]) -> List[int]:
        ans = []
        for x in nums:
            if x == 2:
                ans.append(-1)
            else:
                for i in range(1, 32):
                    if x >> i & 1 ^ 1:
                        ans.append(x ^ 1 << (i - 1))
                        break
        return ans

Java

class Solution {
    public int[] minBitwiseArray(List<Integer> nums) {
        int n = nums.size();
        int[] ans = new int[n];
        for (int i = 0; i < n; ++i) {
            int x = nums.get(i);
            if (x == 2) {
                ans[i] = -1;
            } else {
                for (int j = 1; j < 32; ++j) {
                    if ((x >> j & 1) == 0) {
                        ans[i] = x ^ 1 << (j - 1);
                        break;
                    }
                }
            }
        }
        return ans;
    }
}

C++

class Solution {
public:
    vector<int> minBitwiseArray(vector<int>& nums) {
        vector<int> ans;
        for (int x : nums) {
            if (x == 2) {
                ans.push_back(-1);
            } else {
                for (int i = 1; i < 32; ++i) {
                    if (x >> i & 1 ^ 1) {
                        ans.push_back(x ^ 1 << (i - 1));
                        break;
                    }
                }
            }
        }
        return ans;
    }
};

Go

func minBitwiseArray(nums []int) (ans []int) {
	for _, x := range nums {
		if x == 2 {
			ans = append(ans, -1)
		} else {
			for i := 1; i < 32; i++ {
				if x>>i&1 == 0 {
					ans = append(ans, x^1<<(i-1))
					break
				}
			}
		}
	}
	return
}

TypeScript

function minBitwiseArray(nums: number[]): number[] {
    const ans: number[] = [];
    for (const x of nums) {
        if (x === 2) {
            ans.push(-1);
        } else {
            for (let i = 1; i < 32; ++i) {
                if (((x >> i) & 1) ^ 1) {
                    ans.push(x ^ (1 << (i - 1)));
                    break;
                }
            }
        }
    }
    return ans;
}