Skip to content

Latest commit

 

History

History
253 lines (211 loc) · 7.23 KB

File metadata and controls

253 lines (211 loc) · 7.23 KB
comments difficulty edit_url tags
true
Medium
Tree
Depth-First Search
Array
Hash Table
String

中文文档

Description

You are given a tree rooted at node 0 that consists of n nodes numbered from 0 to n - 1. The tree is represented by an array parent of size n, where parent[i] is the parent of node i. Since node 0 is the root, parent[0] == -1.

You are also given a string s of length n, where s[i] is the character assigned to node i.

We make the following changes on the tree one time simultaneously for all nodes x from 1 to n - 1:

  • Find the closest node y to node x such that y is an ancestor of x, and s[x] == s[y].
  • If node y does not exist, do nothing.
  • Otherwise, remove the edge between x and its current parent and make node y the new parent of x by adding an edge between them.

Return an array answer of size n where answer[i] is the size of the subtree rooted at node i in the final tree.

 

Example 1:

Input: parent = [-1,0,0,1,1,1], s = "abaabc"

Output: [6,3,1,1,1,1]

Explanation:

The parent of node 3 will change from node 1 to node 0.

Example 2:

Input: parent = [-1,0,4,0,1], s = "abbba"

Output: [5,2,1,1,1]

Explanation:

The following changes will happen at the same time:

  • The parent of node 4 will change from node 1 to node 0.
  • The parent of node 2 will change from node 4 to node 1.

 

Constraints:

  • n == parent.length == s.length
  • 1 <= n <= 105
  • 0 <= parent[i] <= n - 1 for all i >= 1.
  • parent[0] == -1
  • parent represents a valid tree.
  • s consists only of lowercase English letters.

Solutions

Solution 1

Python3

class Solution:
    def findSubtreeSizes(self, parent: List[int], s: str) -> List[int]:
        def dfs(i: int, fa: int):
            ans[i] = 1
            d[s[i]].append(i)
            for j in g[i]:
                dfs(j, i)
            k = fa
            if len(d[s[i]]) > 1:
                k = d[s[i]][-2]
            if k != -1:
                ans[k] += ans[i]
            d[s[i]].pop()

        n = len(s)
        g = [[] for _ in range(n)]
        for i in range(1, n):
            g[parent[i]].append(i)
        d = defaultdict(list)
        ans = [0] * n
        dfs(0, -1)
        return ans

Java

class Solution {
    private List<Integer>[] g;
    private List<Integer>[] d;
    private char[] s;
    private int[] ans;

    public int[] findSubtreeSizes(int[] parent, String s) {
        int n = s.length();
        g = new List[n];
        d = new List[26];
        this.s = s.toCharArray();
        Arrays.setAll(g, k -> new ArrayList<>());
        Arrays.setAll(d, k -> new ArrayList<>());
        for (int i = 1; i < n; ++i) {
            g[parent[i]].add(i);
        }
        ans = new int[n];
        dfs(0, -1);
        return ans;
    }

    private void dfs(int i, int fa) {
        ans[i] = 1;
        int idx = s[i] - 'a';
        d[idx].add(i);
        for (int j : g[i]) {
            dfs(j, i);
        }
        int k = d[idx].size() > 1 ? d[idx].get(d[idx].size() - 2) : fa;
        if (k >= 0) {
            ans[k] += ans[i];
        }
        d[idx].remove(d[idx].size() - 1);
    }
}

C++

class Solution {
public:
    vector<int> findSubtreeSizes(vector<int>& parent, string s) {
        int n = s.size();
        vector<int> g[n];
        vector<int> d[26];
        for (int i = 1; i < n; ++i) {
            g[parent[i]].push_back(i);
        }
        vector<int> ans(n);
        auto dfs = [&](auto&& dfs, int i, int fa) -> void {
            ans[i] = 1;
            int idx = s[i] - 'a';
            d[idx].push_back(i);
            for (int j : g[i]) {
                dfs(dfs, j, i);
            }
            int k = d[idx].size() > 1 ? d[idx][d[idx].size() - 2] : fa;
            if (k >= 0) {
                ans[k] += ans[i];
            }
            d[idx].pop_back();
        };
        dfs(dfs, 0, -1);
        return ans;
    }
};

Go

func findSubtreeSizes(parent []int, s string) []int {
	n := len(s)
	g := make([][]int, n)
	for i := 1; i < n; i++ {
		g[parent[i]] = append(g[parent[i]], i)
	}
	d := [26][]int{}
	ans := make([]int, n)
	var dfs func(int, int)
	dfs = func(i, fa int) {
		ans[i] = 1
		idx := int(s[i] - 'a')
		d[idx] = append(d[idx], i)
		for _, j := range g[i] {
			dfs(j, i)
		}
		k := fa
		if len(d[idx]) > 1 {
			k = d[idx][len(d[idx])-2]
		}
		if k != -1 {
			ans[k] += ans[i]
		}
		d[idx] = d[idx][:len(d[idx])-1]
	}
	dfs(0, -1)
	return ans
}

TypeScript

function findSubtreeSizes(parent: number[], s: string): number[] {
    const n = parent.length;
    const g: number[][] = Array.from({ length: n }, () => []);
    const d: number[][] = Array.from({ length: 26 }, () => []);
    for (let i = 1; i < n; ++i) {
        g[parent[i]].push(i);
    }
    const ans: number[] = Array(n).fill(1);
    const dfs = (i: number, fa: number): void => {
        const idx = s.charCodeAt(i) - 97;
        d[idx].push(i);
        for (const j of g[i]) {
            dfs(j, i);
        }
        const k = d[idx].length > 1 ? d[idx].at(-2)! : fa;
        if (k >= 0) {
            ans[k] += ans[i];
        }
        d[idx].pop();
    };
    dfs(0, -1);
    return ans;
}