Skip to content

Latest commit

 

History

History
301 lines (240 loc) · 9.47 KB

File metadata and controls

301 lines (240 loc) · 9.47 KB
comments difficulty edit_url tags
true
Medium
Graph
Array
Matrix
Shortest Path
Heap (Priority Queue)

中文文档

Description

There is a dungeon with n x m rooms arranged as a grid.

You are given a 2D array moveTime of size n x m, where moveTime[i][j] represents the minimum time in seconds when you can start moving to that room. You start from the room (0, 0) at time t = 0 and can move to an adjacent room. Moving between adjacent rooms takes exactly one second.

Return the minimum time to reach the room (n - 1, m - 1).

Two rooms are adjacent if they share a common wall, either horizontally or vertically.

 

Example 1:

Input: moveTime = [[0,4],[4,4]]

Output: 6

Explanation:

The minimum time required is 6 seconds.

  • At time t == 4, move from room (0, 0) to room (1, 0) in one second.
  • At time t == 5, move from room (1, 0) to room (1, 1) in one second.

Example 2:

Input: moveTime = [[0,0,0],[0,0,0]]

Output: 3

Explanation:

The minimum time required is 3 seconds.

  • At time t == 0, move from room (0, 0) to room (1, 0) in one second.
  • At time t == 1, move from room (1, 0) to room (1, 1) in one second.
  • At time t == 2, move from room (1, 1) to room (1, 2) in one second.

Example 3:

Input: moveTime = [[0,1],[1,2]]

Output: 3

 

Constraints:

  • 2 <= n == moveTime.length <= 50
  • 2 <= m == moveTime[i].length <= 50
  • 0 <= moveTime[i][j] <= 109

Solutions

Solution 1: Dijkstra's Algorithm

We define a two-dimensional array $\textit{dist}$, where $\textit{dist}[i][j]$ represents the minimum time required to reach room $(i, j)$ from the starting point. Initially, we set all elements in the $\textit{dist}$ array to infinity, and then set the $\textit{dist}$ value of the starting point $(0, 0)$ to $0$.

We use a priority queue $\textit{pq}$ to store each state, where each state consists of three values $(d, i, j)$, representing the time $d$ required to reach room $(i, j)$ from the starting point. Initially, we add the starting point $(0, 0, 0)$ to $\textit{pq}$.

In each iteration, we take the front element $(d, i, j)$ from $\textit{pq}$. If $(i, j)$ is the endpoint, we return $d$. If $d$ is greater than $\textit{dist}[i][j]$, we skip this state. Otherwise, we enumerate the four adjacent positions $(x, y)$ of $(i, j)$. If $(x, y)$ is within the map, we calculate the final time $t$ from $(i, j)$ to $(x, y)$ as $t = \max(\textit{moveTime}[x][y], \textit{dist}[i][j]) + 1$. If $t$ is less than $\textit{dist}[x][y]$, we update the value of $\textit{dist}[x][y]$ and add $(t, x, y)$ to $\textit{pq}$.

The time complexity is $O(n \times m \times \log (n \times m))$, and the space complexity is $O(n \times m)$. Here, $n$ and $m$ are the number of rows and columns of the map, respectively.

Python3

class Solution:
    def minTimeToReach(self, moveTime: List[List[int]]) -> int:
        n, m = len(moveTime), len(moveTime[0])
        dist = [[inf] * m for _ in range(n)]
        dist[0][0] = 0
        pq = [(0, 0, 0)]
        dirs = (-1, 0, 1, 0, -1)
        while 1:
            d, i, j = heappop(pq)
            if i == n - 1 and j == m - 1:
                return d
            if d > dist[i][j]:
                continue
            for a, b in pairwise(dirs):
                x, y = i + a, j + b
                if 0 <= x < n and 0 <= y < m:
                    t = max(moveTime[x][y], dist[i][j]) + 1
                    if dist[x][y] > t:
                        dist[x][y] = t
                        heappush(pq, (t, x, y))

Java

class Solution {
    public int minTimeToReach(int[][] moveTime) {
        int n = moveTime.length;
        int m = moveTime[0].length;
        int[][] dist = new int[n][m];
        for (var row : dist) {
            Arrays.fill(row, Integer.MAX_VALUE);
        }
        dist[0][0] = 0;

        PriorityQueue<int[]> pq = new PriorityQueue<>((a, b) -> a[0] - b[0]);
        pq.offer(new int[] {0, 0, 0});
        int[] dirs = {-1, 0, 1, 0, -1};
        while (true) {
            int[] p = pq.poll();
            int d = p[0], i = p[1], j = p[2];

            if (i == n - 1 && j == m - 1) {
                return d;
            }
            if (d > dist[i][j]) {
                continue;
            }

            for (int k = 0; k < 4; k++) {
                int x = i + dirs[k];
                int y = j + dirs[k + 1];
                if (x >= 0 && x < n && y >= 0 && y < m) {
                    int t = Math.max(moveTime[x][y], dist[i][j]) + 1;
                    if (dist[x][y] > t) {
                        dist[x][y] = t;
                        pq.offer(new int[] {t, x, y});
                    }
                }
            }
        }
    }
}

C++

class Solution {
public:
    int minTimeToReach(vector<vector<int>>& moveTime) {
        int n = moveTime.size();
        int m = moveTime[0].size();
        vector<vector<int>> dist(n, vector<int>(m, INT_MAX));
        dist[0][0] = 0;
        priority_queue<array<int, 3>, vector<array<int, 3>>, greater<>> pq;
        pq.push({0, 0, 0});
        int dirs[5] = {-1, 0, 1, 0, -1};

        while (1) {
            auto [d, i, j] = pq.top();
            pq.pop();

            if (i == n - 1 && j == m - 1) {
                return d;
            }
            if (d > dist[i][j]) {
                continue;
            }

            for (int k = 0; k < 4; ++k) {
                int x = i + dirs[k];
                int y = j + dirs[k + 1];

                if (x >= 0 && x < n && y >= 0 && y < m) {
                    int t = max(moveTime[x][y], dist[i][j]) + 1;
                    if (dist[x][y] > t) {
                        dist[x][y] = t;
                        pq.push({t, x, y});
                    }
                }
            }
        }
    }
};

Go

func minTimeToReach(moveTime [][]int) int {
	n, m := len(moveTime), len(moveTime[0])
	dist := make([][]int, n)
	for i := range dist {
		dist[i] = make([]int, m)
		for j := range dist[i] {
			dist[i][j] = math.MaxInt32
		}
	}
	dist[0][0] = 0

	pq := &hp{}
	heap.Init(pq)
	heap.Push(pq, tuple{0, 0, 0})

	dirs := []int{-1, 0, 1, 0, -1}
	for {
		p := heap.Pop(pq).(tuple)
		d, i, j := p.dis, p.x, p.y

		if i == n-1 && j == m-1 {
			return d
		}
		if d > dist[i][j] {
			continue
		}

		for k := 0; k < 4; k++ {
			x, y := i+dirs[k], j+dirs[k+1]
			if x >= 0 && x < n && y >= 0 && y < m {
				t := max(moveTime[x][y], dist[i][j]) + 1
				if dist[x][y] > t {
					dist[x][y] = t
					heap.Push(pq, tuple{t, x, y})
				}
			}
		}
	}
}

type tuple struct{ dis, x, y int }
type hp []tuple

func (h hp) Len() int           { return len(h) }
func (h hp) Less(i, j int) bool { return h[i].dis < h[j].dis }
func (h hp) Swap(i, j int)      { h[i], h[j] = h[j], h[i] }
func (h *hp) Push(v any)        { *h = append(*h, v.(tuple)) }
func (h *hp) Pop() (v any)      { a := *h; *h, v = a[:len(a)-1], a[len(a)-1]; return }

TypeScript

function minTimeToReach(moveTime: number[][]): number {
    const [n, m] = [moveTime.length, moveTime[0].length];
    const dist: number[][] = Array.from({ length: n }, () => Array(m).fill(Infinity));
    dist[0][0] = 0;
    const pq = new PriorityQueue({ compare: (a, b) => a[0] - b[0] });
    pq.enqueue([0, 0, 0]);
    const dirs = [-1, 0, 1, 0, -1];
    while (1) {
        const [d, i, j] = pq.dequeue();
        if (i === n - 1 && j === m - 1) {
            return d;
        }
        if (d > dist[i][j]) {
            continue;
        }
        for (let k = 0; k < 4; ++k) {
            const [x, y] = [i + dirs[k], j + dirs[k + 1]];
            if (x >= 0 && x < n && y >= 0 && y < m) {
                const t = Math.max(moveTime[x][y], dist[i][j]) + 1;
                if (dist[x][y] > t) {
                    dist[x][y] = t;
                    pq.enqueue([t, x, y]);
                }
            }
        }
    }
}