-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpowercurve_const_beta_in.py
338 lines (278 loc) · 12.3 KB
/
powercurve_const_beta_in.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon Oct 9 22:37:27 2023
Power curve computed following the three-regimes strategy.
In this implementation, a constant elevation angle beta is prescribed during
reel-in, which means that the lift-to-drag ratio during reel-in is computed as a
dependent variable.
@author: Roland Schmehl
"""
import matplotlib as mpl
import matplotlib.pyplot as plt
from scipy import optimize as op
from pylab import np
mpl.rcParams['font.family'] = "Open Sans"
mpl.rcParams.update({'font.size': 18})
mpl.rcParams['figure.figsize'] = 10, 5.625
mpl.rc('xtick', labelsize=16)
mpl.rc('ytick', labelsize=16)
mpl.rcParams['pdf.fonttype'] = 42 # Output Type 3 (Type3) or Type 42 (TrueType)
# Environmental properties
atmosphere_density = 0.01 # kg/**3
wind_speed_min = 1. # m/s
wind_speed_max = 40. # m/s
wind_speed_delta = 0.1 # m/s
# Kite properties
kite_planform_area = 200. # m**2
kite_lift_coefficient_out = 0.71 # -
kite_drag_coefficient_out = 0.14 # -
kite_lift_coefficient_in = 0.39 # -
# Tether properties
nominal_tether_force = 5100. # N
tether_drag_coefficient = 1.1 # -
tether_diameter = 0.00484 # m
# Generator properties
nominal_generator_power = 77000. # W
# Operational parameters
elevation_angle_out = 25. # deg
elevation_angle_in = 65. # deg
reeling_speed_min_limit = -21. # m/s
reeling_speed_max_limit = 8. # m/s
# Derived properties
E2 = (kite_lift_coefficient_out / kite_drag_coefficient_out)**2
cosine_beta_out = np.cos(np.radians(elevation_angle_out))
cosine_beta_in = np.cos(np.radians(elevation_angle_in))
force_factor_out = kite_lift_coefficient_out * np.sqrt(1+1/E2) * (1+E2)
power_factor_ideal = force_factor_out * cosine_beta_out**3 * 4/27
wind_speed_range = wind_speed_max - wind_speed_min
num_wind_speeds = int(wind_speed_range/wind_speed_delta + 1)
wind_speed = np.linspace(wind_speed_min, wind_speed_max, num_wind_speeds)
# Lists
reeling_factor_out = []
reeling_factor_in = []
tether_force_out = []
tether_force_in = []
power_out = []
power_in = []
cycle_power = []
power_ideal = []
lift_to_drag_in = []
# Objective function for the three wind speed domains
def objective_function_1(x):
f_out = x[0]
f_in = x[1]
a = 1 - 2*f_in*cosine_beta_in + f_in**2
gamma_in = kite_lift_coefficient_in * np.sqrt(a/(1 - cosine_beta_in**2))
return -((cosine_beta_out - f_out)**2 - (gamma_in / force_factor_out) * \
a) * (f_in*f_out) / (f_in - f_out)
def objective_function_2(x, mu_F, f_nF):
f_in = x[0]
a = 1 - 2*f_in*cosine_beta_in + f_in**2
b = (mu_F - 1) * cosine_beta_out + f_nF
gamma_in = kite_lift_coefficient_in * np.sqrt(a/(1 - cosine_beta_in**2))
return -(((cosine_beta_out - f_nF) / mu_F)**2 \
- (gamma_in / force_factor_out) * a) \
* f_in*b/(mu_F*f_in-b)
def objective_function_3(x, mu_P, f_nP):
f_in = x[0]
a = 1 - 2*f_in*cosine_beta_in + f_in**2
gamma_in = kite_lift_coefficient_in * np.sqrt(a/(1 - cosine_beta_in**2))
return -(((cosine_beta_out - f_nP) / mu_P)**2 \
- (gamma_in / force_factor_out) * a) \
* f_in*f_nP/(mu_P*f_in-f_nP)
print("num_wind_speeds = ", num_wind_speeds)
###############################################################################
# Initialize wind speed regimes
wind_speed_regime = 1
wind_speed_force_limit = 0
wind_speed_power_limit = 0
print("Wind speed regime 1")
# Loop over wind speed range
for v_w in wind_speed:
# Dynamic pressure
q = 0.5 * atmosphere_density * v_w**2
# Wind power density
P_w = q*v_w
# Reeling factor limits
f_max = reeling_speed_max_limit / v_w
f_min = reeling_speed_min_limit / v_w
# Unconstrained operation
if wind_speed_regime == 1:
starting_point = (0.001, -0.001)
bounds = ((0.001, f_max), (f_min, -0.001),)
optimisation_result = op.minimize(objective_function_1, \
starting_point, \
bounds=bounds, \
method='SLSQP')
# Reeling factors
f_out = optimisation_result['x'][0]
f_in = optimisation_result['x'][1]
# Normalized cycle power
p_c = -objective_function_1 ([f_out, f_in])
# Tether force during reel-out
Ft_out = q * kite_planform_area * force_factor_out \
* (cosine_beta_out - f_out)**2
a = 1 - 2*f_in*cosine_beta_in + f_in**2
gamma_in = kite_lift_coefficient_in * np.sqrt(a/(1 - cosine_beta_in**2))
Ft_in = q * kite_planform_area * gamma_in * a
if Ft_out > nominal_tether_force:
wind_speed_regime = 2
# Determine precise value of v_w,F by interval bisection
v_b = v_w
v_a = v_w - wind_speed_delta
c = 0.5 * atmosphere_density * kite_planform_area \
* force_factor_out * (cosine_beta_out - f_out)**2
nmax = 100
eps = 0.1
for i in range(nmax):
v = (v_a + v_b)/2
Ft = c * v**2
if Ft > nominal_tether_force:
v_b = v
else:
v_a = v
if abs(Ft-nominal_tether_force) < eps:
break
else:
print("!!! search v_w,F stopped after nmax=", nmax, "iterations")
print("--> increase nmax and rerun")
wind_speed_force_limit = v
f_nF = f_out # works because f_out is constant in regime 1
print()
print("Wind speed regime 2 with v_n,F at", "{:5.2f}".format(wind_speed_force_limit))
print()
# Constrained tether force
if wind_speed_regime == 2:
mu_F = v_w / wind_speed_force_limit
starting_point = (-0.001)
bounds = ((f_min, -0.001),)
optimisation_result = op.minimize(objective_function_2, \
starting_point, \
args=(mu_F, f_nF), \
bounds=bounds, \
method='SLSQP')
# Reeling factors
f_out = (cosine_beta_out * (mu_F - 1) + f_nF)/mu_F
f_in = optimisation_result['x'][0]
# Normalized cycle power
p_c = -objective_function_2 ([f_in], mu_F, f_nF)
# Tether force and mechanical power during reel out
Ft_out = q * kite_planform_area * force_factor_out * \
(cosine_beta_out - f_out)**2
a = 1 - 2*f_in*cosine_beta_in + f_in**2
gamma_in = kite_lift_coefficient_in * np.sqrt(a/(1 - cosine_beta_in**2))
Ft_in = q * kite_planform_area * gamma_in * a
# Mechanical power during reel out
P_out = Ft_out * v_w * f_out
if P_out > nominal_generator_power:
wind_speed_regime = 3
# Determine precise value of v_w,P by interval bisection
v_b = v_w
v_a = v_w - wind_speed_delta
c = 0.5 * atmosphere_density * kite_planform_area \
* force_factor_out
nmax = 100
eps = 1
for i in range(nmax):
v = (v_a + v_b)/2
mu = v / wind_speed_force_limit
f = (cosine_beta_out * (mu - 1) + f_nF)/mu
P = c * (cosine_beta_out - f)**2 * v**3 * f
if P > nominal_generator_power:
v_b = v
else:
v_a = v
if abs(P-nominal_generator_power) < eps:
break
else:
print("!!! search v_w,P stopped after nmax=", nmax, "iterations")
print("--> increase nmax and rerun")
wind_speed_power_limit = v
f_nP = f
print()
print("Wind speed regime 3 with v_n,P at", "{:5.2f}".format(wind_speed_power_limit))
print()
# Constrained tether force and generator power
if wind_speed_regime == 3:
mu_P = v_w / wind_speed_power_limit
f_out = f_nP / mu_P
# Reduce force factor to comply with tether force limit
force_factor_out = nominal_tether_force / (q * kite_planform_area \
* (cosine_beta_out - f_out)**2)
# Alternative strategy to depower: increasing the elevation angle
# cosine_beta_out = np.sqrt(nominal_tether_force / (q \
# * kite_planform_area * force_factor_out)) + f_out
starting_point = (-0.001)
bounds = ((f_min, -0.001),)
optimisation_result = op.minimize(objective_function_3, \
starting_point, \
args=(mu_P, f_nP), \
bounds=bounds, \
method='SLSQP')
# Reeling factors
f_in = optimisation_result['x'][0]
# Normalized cycle power
p_c = -objective_function_3 ([f_in], mu_P, f_nP)
# Tether force
Ft_out = q * kite_planform_area * force_factor_out * \
(cosine_beta_out - f_out)**2
a = 1 - 2*f_in*cosine_beta_in + f_in**2
gamma_in = kite_lift_coefficient_in * np.sqrt(a/(1 - cosine_beta_in**2))
Ft_in = q * kite_planform_area * gamma_in * a
# Mechanical power during reel out => can be elevated from the loop?
P_out = Ft_out * v_w * f_out
P_in = Ft_in * v_w * f_in
# Lift-to-drag ratio reel-in phase
E_in = np.sqrt(1 - cosine_beta_in**2) / (cosine_beta_in - f_in)
print("{:4.1f}".format(v_w), \
"{:5.3f}".format(f_out), \
"{:5.3f}".format(f_in), \
"{:5.0f}".format(Ft_out), \
"{:5.0f}".format(Ft_in), \
"{:6.0f}".format(P_out), \
"{:6.0f}".format(P_in), \
"{:4.1f}".format(v_w * f_out), \
"{:4.1f}".format(v_w * f_in), \
"{:5.2f}".format(force_factor_out), \
"{:5.2f}".format(gamma_in), \
"{:5.2f}".format(E_in))
reeling_factor_out.append(f_out)
reeling_factor_in.append(f_in)
tether_force_out.append(Ft_out)
tether_force_in.append(Ft_in)
power_out.append(P_out)
power_in.append(P_in)
cycle_power.append(p_c * force_factor_out * kite_planform_area * P_w)
power_ideal.append(power_factor_ideal * kite_planform_area * P_w)
lift_to_drag_in.append(E_in)
power_min = np.min(power_ideal)
power_max = np.max(power_ideal)
fig, ax1 = plt.subplots()
ax1.set(xlabel=r"Wind speed, m/s", ylabel=r"Mechanical power, kW")
ax1.set_xlim([0, 50])
ax1.set_ylim([0, 80])
#ax1.grid()
ax1.vlines(wind_speed_force_limit, 0, 100, colors='k', linestyles='solid')
ax1.vlines(wind_speed_power_limit, 0, 100, colors='r', linestyles='solid')
ax1.plot(wind_speed, np.asarray(power_ideal)/1000, 'r', linestyle=':', label=r"$P_{\mathrm{opt}}$")
ax1.plot(wind_speed, np.asarray(cycle_power)/1000, 'b', linestyle='-', label=r"$P_{\mathrm{c}}$")
ax1.plot(wind_speed, np.asarray(power_out)/1000, 'g', linestyle='--', label=r"$P_{\mathrm{o}}$")
ax1.plot(wind_speed, -np.asarray(power_in)/1000, 'r', linestyle='--', label=r"$-P_{\mathrm{i}}$")
ax1.legend(facecolor="white", edgecolor="white")
fig.savefig("powercurve_const_beta_in.svg")
fig, ax1 = plt.subplots()
ax1.set(xlabel=r"Wind speed, m/s", ylabel=r"Reeling factor")
ax1.set_xlim([0, 50])
ax1.set_ylim([0, 1])
#ax1.grid()
ax1.vlines(wind_speed_force_limit, 0, 100, colors='k', linestyles='solid')
ax1.vlines(wind_speed_power_limit, 0, 100, colors='r', linestyles='solid')
ax1.plot(wind_speed, np.asarray(reeling_factor_out), 'g', linestyle='--', label=r"$f_{\mathrm{o}}$")
ax1.plot(wind_speed, -np.asarray(reeling_factor_in), 'r', linestyle='--', label=r"$-f_{\mathrm{i}}$")
ax2 = ax1.twinx()
ax2.set(ylabel=r"Lift to drag ratio")
ax2.set_ylim([0, 1.2])
ax2.plot(wind_speed, np.asarray(lift_to_drag_in), 'b', linestyle='-', label=r"$E_{\mathrm{i}}$")
fig.legend(facecolor="white", edgecolor="white", loc="upper right", bbox_to_anchor=(1,1), bbox_transform=ax1.transAxes)
fig.savefig("operations_const_beta_in.svg")