-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathembeddings.py
96 lines (69 loc) · 3.54 KB
/
embeddings.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
# Importing the libraries (you won't need all of them right now but you will need them later)
from flask import Flask, request, jsonify
from flask import Flask, render_template, request, url_for
from llama_index import SimpleDirectoryReader, GPTListIndex, LLMPredictor, PromptHelper
from langchain.chat_models import ChatOpenAI
import gradio as gr
import sys
import os
import time
from openai.embeddings_utils import get_embedding, cosine_similarity
import pandas
import openai
import numpy as np
import glob
import datetime
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.chat_models import ChatOpenAI
from langchain.chains.summarize import load_summarize_chain
from langchain.prompts.chat import (
ChatPromptTemplate,
SystemMessagePromptTemplate,
AIMessagePromptTemplate,
HumanMessagePromptTemplate
)
from langchain.schema import (
AIMessage,
HumanMessage,
SystemMessage
)
from langchain.llms import OpenAI
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from langchain.text_splitter import CharacterTextSplitter
from langchain.chains.mapreduce import MapReduceChain
from langchain.prompts import PromptTemplate
from api_key import api_key
os.environ["OPENAI_API_KEY"] = api_key
openai.api_key = api_key
llm = ChatOpenAI(temperature=0, model_name="gpt-3.5-turbo") # Setting your OpenAI model
gfiles = glob.glob("chatbot_docs/*") # Reading your document directory
for g1 in range(len(gfiles)): # Iterating through every document
f = open(f"embs{g1}.csv", "w") # Creating a csv file for storing the embeddings for your ChatBot
f.write("combined") # Creating the 'combined' collumn
f.close()
content = ""
with open(f"{gfiles[g1]}", 'r') as file: # Storing the document contents
content += file.read()
content += "\n\n"
text_splitter = RecursiveCharacterTextSplitter(separators=["\n\n", "\n"], chunk_size=2000, chunk_overlap=250)
texts = text_splitter.split_text(content) # Splitting the document content into chunks
def get_embedding(text, model="text-embedding-ada-002"): # Defining the function that creates the embeddings needed for the Chatbot to function (It can't form answers from plain text)
text = text.replace("\n", " ")
return openai.Embedding.create(input = [text], model=model)['data'][0]['embedding']
df = pandas.read_csv(f"embs{g1}.csv") # Reading the empty csv file that you created earlier for storing the embeddings
df["combined"] = texts # Filling the 'combined' collumn with the chunks you created earlier
for i4 in range(len(df["combined"])):
df["combined"][i4] = '""' + df["combined"][i4].replace("\n", "") + '""' # Adding triple quotes around the text chunks to prevent syntax errors caused by double quotes in the text
df.to_csv(f"embs{g1}.csv") # Writing the data to the csv file
df["embedding"] = df.combined.apply(lambda x: get_embedding(x)) # Adding and filling the 'embedding' collumn which contains the embeddings created from your text chunks
df.to_csv(f"embs{g1}.csv", index=False) # Writing the new 'embedding' collumn to the csv file
df = pandas.read_csv(f"embs{g1}.csv") # Reading the new csv file
embs = []
for r1 in range(len(df.embedding)): # Making the embeddings readable to the chatbot by turning them into lists
e1 = df.embedding[r1].split(",")
for ei2 in range(len(e1)):
e1[ei2] = float(e1[ei2].strip().replace("[", "").replace("]", ""))
embs.append(e1)
df["embedding"] = embs # Updating the 'embedding' collumn
df.to_csv(f"embs{g1}.csv", index=False) # Writing the final version of the csv file