-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtes_overall_error.lua
81 lines (70 loc) · 2.66 KB
/
tes_overall_error.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
--this script reproduces the shape completion numbers of our papers.
--For each class in ModelNet10, it takes input as a mat file of all its instances
--and outputs the average error
obj_class = 'chair'
noise_type = 'rand' -- rand means random noise..Dist means slicing noise
noise_level = '30' -- % of distortion..{10,20,30} for slicing and {10,30,50} for random noise
require 'torch' -- torch
require 'xlua' -- xlua provides useful tools, like progress bars
require 'cunn'
matio = require 'matio'
--model = torch.load('mul-class/AE_6912_.1_10class_r/'..'model.net')
model = torch.load('mul-class-models/AE_6912_.1_10class_r_dummy/'..'model.net')
print(model)
--data = torch.rand(5,5)
--matio.save('dummy.mat',data)
trainData = {
data = {},
labels = {},
size = function() return trsize end
}
testData = {
data = {},
labels = {},
size = function() return tesize end
}
--testData.data = matio.load('Data/rand_dresser_te.mat', 'te_distorted_50')
testData.data = matio.load('Data/'..noise_type..'_'..obj_class..'_te.mat', 'te_distorted_'..noise_level)
tesize = testData.data:size()[1]
--trainData.data = matio.load('bed_tr.mat', 'tr_data')
testData.labels = matio.load('Data/'..obj_class..'_te.mat', 'te_data')
model:evaluate()
inputs = torch.Tensor(tesize,1,30,30,30)
outputs = torch.Tensor(tesize,1,30,30,30)
perfect_cubes = torch.Tensor(tesize,1,30,30,30)
for k = 1,tesize,1 do
input = testData.data[k]
perfect_input = testData.labels[k]
input = input:double()
perfect_input = perfect_input:double()
perfect_cubes[k] = perfect_input
inputs[k] = input
end
inputs = inputs:cuda()
outputs = model:forward(inputs)
outputs = outputs:double()
outputs = torch.reshape(outputs,tesize,1,30,30,30)
--outputs = outputs:floats()
-- now that you have the output, estimate the error on the denoising task by only considering those voxels which were shut down at test time randomly.
err = 0
--print('done')
for i = 1,tesize,1 do
output = outputs[i]
bin_output = torch.gt(output, .5 )
bin_output = bin_output:double()
perfect_cube = perfect_cubes[i]
noisey_voxels_tensor = torch.ne(bin_output,perfect_cube) -- this will give me a zero one tensor (1,30,30,30)indicating 1 where the cubes are equal in value and 0 otherwise
noisey_voxels_idx = torch.nonzero(noisey_voxels_tensor) -- this will give x by 4 (2 dims) matrix
dummy = torch.numel(noisey_voxels_idx)
if dummy > 0 then
err = err + noisey_voxels_idx:size()[1]
--print(err)
else
print('no error in this example')
end
end --for outer for loop on i
--print(tesize)
aa = err/tesize
--print(err/tesize)
te_err = aa*100/13824
print('the test error is '..te_err..'%')