forked from udacity/P1_Facial_Keypoints
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
63 lines (46 loc) · 2.64 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
## TODO: define the convolutional neural network architecture
import torch
import torch.nn as nn
import torch.nn.functional as F
# can use the below import should you choose to initialize the weights of your Net
import torch.nn.init as I
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
## TODO: Define all the layers of this CNN, the only requirements are:
## 1. This network takes in a square (same width and height), grayscale image as input
## 2. It ends with a linear layer that represents the keypoints
## it's suggested that you make this last layer output 136 values, 2 for each of the 68 keypoint (x, y) pairs
# As an example, you've been given a convolutional layer, which you may (but don't have to) change:
# 1 input image channel (grayscale), 32 output channels/feature maps, 5x5 square convolution kernel
self.conv_1 = nn.Conv2d(1, 32, 5)
self.conv_2 = nn.Conv2d(32, 64, 3)
self.conv_3 = nn.Conv2d(64, 128, 3)
self.conv_4 = nn.Conv2d(128, 256, 3)
self.conv_5 = nn.Conv2d(256, 512, 1)
self.conv1_bn = nn.BatchNorm2d(32)
self.conv2_bn = nn.BatchNorm2d(64)
self.conv3_bn = nn.BatchNorm2d(128)
self.conv4_bn = nn.BatchNorm2d(256)
self.conv5_bn = nn.BatchNorm2d(512)
self.pool = nn.MaxPool2d(2,2)
self.dropout = nn.Dropout(0.2)
self.dense_1 = nn.Linear(512*6*6, 1000)
self.dense_2 = nn.Linear(1000, 1000)
self.dense_3 = nn.Linear(1000, 136)
## Note that among the layers to add, consider including:
# maxpooling layers, multiple conv layers, fully-connected layers, and other layers (such as dropout or batch normalization) to avoid overfitting
def forward(self, x):
## TODO: Define the feedforward behavior of this model
## x is the input image and, as an example, here you may choose to include a pool/conv step:
x = self.dropout(self.pool(F.selu(self.conv1_bn(self.conv_1(x)))))
x = self.dropout(self.pool(F.selu(self.conv2_bn(self.conv_2(x)))))
x = self.dropout(self.pool(F.selu(self.conv3_bn(self.conv_3(x)))))
x = self.dropout(self.pool(F.selu(self.conv4_bn(self.conv_4(x)))))
x = self.dropout(self.pool(F.selu(self.conv5_bn(self.conv_5(x)))))
x = x.view(x.size(0), -1)
x = self.dropout(F.relu(self.dense_1(x)))
x = self.dropout(F.relu(self.dense_2(x)))
x = self.dense_3(x)
# a modified x, having gone through all the layers of your model, should be returned
return x