-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
474 lines (357 loc) · 18.8 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
from __future__ import print_function
import matplotlib.pyplot as plt
import argparse
import os
import random
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from visualizer import color_error_image_kitti, add_text_and_rectangle
from models.raft_stereo import *
from torchvision.transforms.functional import rgb_to_grayscale
from vpp_standalone import vpp
from filter import occlusion_heuristic
from utils import sgm_opencv
from losses import *
import cv2
import sys
sys.path.append('dataloaders')
import datasets
import tqdm
IMAGENET_MEAN = [0.485, 0.456, 0.406]
IMAGENET_STD = [0.229, 0.224, 0.225]
parser = argparse.ArgumentParser(description='VPP for DC')
parser.add_argument('--maxdisp', type=int ,default=256,
help='maxium disparity')
parser.add_argument('--model', default='raft-stereo',
help='select model')
parser.add_argument('--loadmodel',
help='load model', default=None)
parser.add_argument('--datapath', default='dataset/oak_dataset/',
help='datapath')
parser.add_argument('--dataset', default='middlebury', help='dataset type')
parser.add_argument('--outdir', default=None)
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--iscale', type=int, default=1,
help='Downsampling factor')
parser.add_argument('--oscale', type=int, default=1,
help='Downsampling factor')
parser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed (default: 1)')
parser.add_argument('--wsize', type=int, default=5, help='Patch size')
parser.add_argument('--guideperc', type=float, default=0.05)
parser.add_argument('--blending', type=float, default=1, help='Pattern alpha blending')
parser.add_argument('--valsize', type=int, default=0, help='validation max size (0=unlimited)')
parser.add_argument('--normalize', action='store_true')
parser.add_argument('--maskocc', action='store_true')
parser.add_argument('--cblending', type=float, default=0.0, help='Pattern alpha blending on occluded points')
parser.add_argument('--uniform_color', action='store_true')
parser.add_argument('--guided', action='store_true')
parser.add_argument('--tries', type=int, default=1)
parser.add_argument('--filterlidar', action='store_true')
parser.add_argument('--z_max', type=float, default=0.0)
parser.add_argument('--z_clip', type=float, default=0.0)
parser.add_argument('--refdomain', choices=['depth', 'disparity'], default='depth')
parser.add_argument('--refbins', type=int, default=128)
parser.add_argument('--gt_source', action='store_true')
parser.add_argument('--interpolate', action='store_true')
parser.add_argument('--filling', action='store_true')
parser.add_argument('--leftpadding', action='store_true')
parser.add_argument('--context', action='store_true')
parser.add_argument('--baseline', type=float, default=None)
parser.add_argument('--o_xy', type=float, default=1)
parser.add_argument('--o_i', type=float, default=1)
parser.add_argument('--th_adpt', type=float, default=0.001)
parser.add_argument('--depth_only', action='store_true')
parser.add_argument('--hints_dilation', type=int, default=0)
parser.add_argument('--errormap_dilation', type=int, default=0)
parser.add_argument('--errormap_scale', type=float, default=1)
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
random.seed(args.seed)
np.random.seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
device = torch.device('cuda')
else:
device = torch.device('cpu')
stereonet = None
if args.model == 'raft-stereo':
stereonet = RAFTStereo(args)
elif args.model in ['sgm']:
stereonet = None
else:
print(f'no model ({args.model}:{args.loadmodel})')
exit()
if args.cuda:
if stereonet is not None:
stereonet = nn.DataParallel(stereonet)
stereonet.to(device)
if args.loadmodel is not None:
print('Load pretrained stereo model...')
if args.model in ['raft-stereo']:
state_dict = torch.load(args.loadmodel, map_location=device)
state_dict = state_dict['state_dict'] if 'state_dict' in state_dict else state_dict
stereonet.load_state_dict(state_dict)
else:
print(f"Cannot load {args.model}")
elif stereonet is not None:
print('No pretrained stereo model')
exit()
n_params_stereo = sum([p.data.nelement() for p in stereonet.parameters()]) if stereonet is not None else 0
print('Number of stereo model parameters: {}'.format(n_params_stereo))
@torch.no_grad()
def run(data):
global stereonet
if args.model not in ['sgm']:
stereonet.eval()
if 'hints' not in data or args.gt_source:
data['hints'], data['validhints'] = sample_hints(data['gt'], data['validgt']>0, probability=args.guideperc)
else:
data['hints'], data['validhints'] = sample_hints(data['hints'], data['validhints']>0, probability=args.guideperc)
if 'fhints' not in data or not args.filterlidar:
data['fhints'], data['fvalidhints'] = data['hints'], data['validhints']
baseline,focal = data['calib_data']['b'][0].item(), data['calib_data']['f'][0].item()
run.counter +=1
if args.iscale != 1:
for k in ['im2', 'im3']:
data[k] = F.interpolate(data[k], scale_factor=1./args.iscale)
for k in ['hints', 'fhints']:
data[k] = F.interpolate(data[k], scale_factor=1./args.iscale, mode='nearest') / args.iscale
tmp_map = {'validhints':'hints','fvalidhints':'fhints'}
for k in ['validhints', 'fvalidhints']:
data[k] = torch.where(data[tmp_map[k]] > 0,1,0)
if args.oscale != 1:
data['gt'] = F.interpolate(data['gt'], scale_factor=1./args.oscale, mode='nearest-exact') / args.oscale
data['validgt'] = F.interpolate(data['validgt'], scale_factor=1./args.oscale, mode='nearest-exact')
#Prepadding to add left border occlusion points
w = data['hints'].shape[-1]
left_pad_size = round(data['hints'].max().item())
left_pad_size = min(left_pad_size, 200)
left_pad_size = left_pad_size + (32-(left_pad_size+w) % 32)
prepad = args.leftpadding
left_pad_size = left_pad_size if prepad else 0
_prepad = [left_pad_size,0,0,0]
for k in ['im2', 'im3', 'hints', 'validhints', 'fhints', 'fvalidhints']:
data[k] = F.pad(data[k], _prepad, mode='constant', value=0)
c,h,w = data['im2'][0].shape
left_black = np.zeros((h,w,c), dtype=np.uint8)
right_black = np.zeros((h,w,c), dtype=np.uint8)
im2_blended_list = []
im3_blended_list = []
for b in range(args.batch_size):
left = (255*data['im2'][b].permute(1,2,0).numpy()).astype(np.uint8)
extrapolated_hints = data['fhints'][b,0].numpy()
mask_occ = occlusion_heuristic(extrapolated_hints)[1] if args.maskocc else None
im2_blended, im3_blended = vpp(left, left_black, right_black,
extrapolated_hints, blending=args.blending, wsize=args.wsize,
c_occ=args.cblending, g_occ=mask_occ, useFilling = args.filling, useContext=args.context,
fillingThreshold=args.th_adpt, o_xy=args.o_xy, o_i=args.o_i,
left2right=True, method='rnd', uniform_color=args.uniform_color, interpolate=args.interpolate )
im2_blended_list.append(torch.from_numpy(im2_blended/255.).permute(2,0,1).unsqueeze(0).float())
im3_blended_list.append(torch.from_numpy(im3_blended/255.).permute(2,0,1).unsqueeze(0).float())
data['im2_blended'] = torch.cat(im2_blended_list,0)
data['im3_blended'] = torch.cat(im3_blended_list,0)
if args.cuda:
for k in ['im2', 'im3', 'im2_blended', 'im3_blended', 'hints', 'validhints', 'fhints', 'fvalidhints']:
data[k] = data[k].cuda()
ht, wt = data['im2'].shape[-2], data['im2'].shape[-1]
if args.model in ['raft-stereo', 'sgm']:
pad_ht = (((ht // 32) + 1) * 32 - ht) % 32
pad_wd = (((wt // 32) + 1) * 32 - wt) % 32
#Stereo network prepadding
_pad = [pad_wd//2, pad_wd - pad_wd//2, pad_ht//2, pad_ht - pad_ht//2]
for k in ['im2', 'im3', 'im2_blended', 'im3_blended', 'hints', 'validhints', 'fhints', 'fvalidhints']:
data[k] = F.pad(data[k], _pad, mode='constant', value=0)
data['im2_vpp'], data['im3_vpp'] = data['im2_blended'] , data['im3_blended']
inject_hints = data['fhints'] if args.guided else None
inject_validhints = data['fvalidhints'] if args.guided else None
if args.model == 'sgm':
pred_disp = []
left_gray = rgb_to_grayscale(data['im2_vpp'])
right_gray = rgb_to_grayscale(data['im3_vpp'])
for b in range(data['im2'].shape[0]):
left = (left_gray[b,0].cpu().numpy()*255.).astype(np.uint8)
right = (right_gray[b,0].cpu().numpy()*255.).astype(np.uint8)
disp = sgm_opencv(left,right,args.maxdisp)
pred_disp.append(torch.from_numpy(disp).unsqueeze(0).unsqueeze(0).float())
pred_disps = torch.cat(pred_disp, 0).to(device)
elif args.model in ['raft-stereo']:
ctx = data['im2'] if not args.depth_only else torch.zeros_like(data['im2'])
_,pred_disps = stereonet(ctx, data['im2_vpp'], data['im3_vpp'],
test_mode=True, iters=22, normalize=args.normalize,
hints=inject_hints, validhints=inject_validhints)
else:
pred_disps = stereonet(data['im2_vpp'], data['im3_vpp'])
if args.model == 'raft-stereo':
pred_disp = -pred_disps.squeeze(1)
elif args.model in ['sgm']:
pred_disp = pred_disps.squeeze(1)
ht, wd = pred_disp.shape[-2:]
c = [_pad[2], ht-_pad[3], _pad[0], wd-_pad[1]]
pred_disp = pred_disp[..., c[0]:c[1], c[2]:c[3]]
for k in ['fhints', 'fvalidhints', 'hints', 'validhints', 'im2', 'im3']:
data[k] = data[k][..., c[0]:c[1], c[2]:c[3]]
#Remove left border prepadding
ht, wd = pred_disp.shape[-2:]
c = [_prepad[2], ht-_prepad[3], _prepad[0], wd-_prepad[1]]
pred_disp = pred_disp[..., c[0]:c[1], c[2]:c[3]]
for k in ['fhints', 'fvalidhints', 'hints', 'validhints', 'im2', 'im3']:
data[k] = data[k][..., c[0]:c[1], c[2]:c[3]]
if args.iscale != 1:
for k in ['im2', 'im3']:
data[k] = F.interpolate(data[k], scale_factor=args.iscale)
for k in ['hints', 'fhints']:
data[k] = F.interpolate(data[k], scale_factor=args.iscale, mode='nearest') * args.iscale
for k in ['validhints', 'fvalidhints']:
data[k] = F.interpolate(data[k].float(), scale_factor=args.iscale, mode='nearest')
if args.iscale != 1 and args.iscale/args.oscale != 1:
pred_disp = F.interpolate(pred_disp.unsqueeze(0), scale_factor=args.iscale/args.oscale, mode='nearest').squeeze(0) * args.iscale / args.oscale
pred_depth = pred_disp.clone()
pred_depth[pred_depth>0] = (focal*baseline) / pred_depth[pred_depth>0]
pred_depth[pred_depth<=0] = 0
if args.z_clip > 0:
pred_depth[pred_depth>args.z_clip] = args.z_clip
if args.refdomain == 'depth':
if 'gt_depth' in data:
gt = data['gt_depth']
else:
gt = data['gt'].clone()
gt[gt>0] = (focal*baseline) / gt[gt>0]
gt[gt<=0] = 0
hints = data['hints'].clone()
hints[hints>0] = (focal*baseline) / hints[hints>0]
hints[hints<=0] = 0
fhints = data['fhints'].clone()
fhints[fhints>0] = (focal*baseline) / fhints[fhints>0]
fhints[fhints<=0] = 0
pred = pred_depth
elif args.refdomain == 'disparity':
gt = data['gt']
hints = data['hints']
fhints = data['fhints']
pred = pred_disp
else:
print(f"error refdomain: {args.refdomain}")
hints = hints.squeeze().unsqueeze(0)
fhints = fhints.squeeze().unsqueeze(0)
if args.refdomain == 'depth':
result = kitti_depth_metrics(pred.cpu().numpy(), gt.numpy(), (gt>0).numpy(), max_depth = args.z_max, clip_depth=args.z_clip)
else:
result = kitti_depth_metrics(pred.cpu().numpy(), gt.numpy(), (gt>0).numpy(), baseline, focal, args.z_max, clip_depth=args.z_clip)
result['pred'] = pred.squeeze()
result['hints'] = hints.squeeze()
result['fhints'] = fhints.squeeze()
result['gt'] = gt.squeeze()
result['im2_vpp'] = 255*data['im2_vpp'].squeeze().permute(1,2,0)
result['im3_vpp'] = 255*data['im3_vpp'].squeeze().permute(1,2,0)
return result
def main():
args.test = True
args.batch_size = 1
demo_loader = datasets.fetch_dataloader(args)
if args.outdir is not None and not os.path.exists(args.outdir):
os.mkdir(args.outdir)
## demo ##
acc_list = []
run.counter = 0
for asd in range(args.tries):
acc = {}
pbar = tqdm.tqdm(total=len(demo_loader))
val_len = min(len(demo_loader), args.valsize) if args.valsize > 0 else len(demo_loader)
for batch_idx, datablob in enumerate(demo_loader):
if batch_idx >= val_len:
break
result = run(datablob)
if args.outdir is not None and asd == 0:
for dirname in ['pred', 'left', 'right', 'errormap', 'errormap_text', 'hints', 'fhints', 'context', 'gt']:
if not os.path.exists(os.path.join(args.outdir, dirname)):
os.mkdir(os.path.join(args.outdir, dirname))
errormap = torch.abs(result['pred'].cpu()-result['gt'])
errormap[result['gt'] <= 0] = 0
# errormap[datablob['hints'][0,0] <= 0] = 0
errormap = errormap.detach().cpu().numpy()
max_depth = args.z_max
max_depth = max_depth if max_depth > 0 else None
if max_depth is not None:
maxval = min(torch.max(result['gt']).item(), max_depth)
else:
maxval = torch.max(result['gt']).item()
minval = torch.min(result['gt']).item()
pred = torch.clamp(result['pred'], minval, max_depth) / maxval
pred = (maxval * pred).cpu().numpy()
hints = torch.clamp(result['hints'], minval, max_depth) / maxval
hints = (maxval * hints).cpu().numpy()
fhints = torch.clamp(result['fhints'], minval, max_depth) / maxval
fhints = (maxval * fhints).cpu().numpy()
gt = torch.clamp(result['gt'], 0, max_depth) / maxval
gt = (maxval * gt).cpu().numpy()
if args.hints_dilation > 0:
kernel = np.ones((args.hints_dilation, args.hints_dilation))
hints = cv2.dilate(hints, kernel)
fhints = cv2.dilate(fhints, kernel)
if args.errormap_dilation > 0:
kernel = np.ones((args.errormap_dilation, args.errormap_dilation))
gt = cv2.dilate(gt, kernel)
errormap_img = cv2.applyColorMap((255*errormap/np.max(errormap)).astype(np.uint8), cv2.COLORMAP_MAGMA)
errormap_img = (errormap_img * 0.7 + 0.3 * cv2.cvtColor((255*datablob['im2'].squeeze().permute(1,2,0).detach().cpu().numpy()).astype(np.uint8), cv2.COLOR_RGB2BGR)).astype(np.uint8)
errormap_img = cv2.putText(errormap_img, f"MAE: {result['mae']:.3f}", (5,15), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255,255,255), 1)
errormap_img = cv2.putText(errormap_img, f"RMSE: {result['rmse']:.3f}", (5,30), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255,255,255), 1)
plt.imsave(os.path.join(os.path.join(args.outdir, "pred"), '%s.png'%(batch_idx)), pred, cmap='magma', vmin=minval, vmax=maxval)
plt.imsave(os.path.join(os.path.join(args.outdir, "hints"), '%s.png'%(batch_idx)), hints, cmap='magma', vmin=minval, vmax=maxval)
plt.imsave(os.path.join(os.path.join(args.outdir, "fhints"), '%s.png'%(batch_idx)), fhints, cmap='magma', vmin=minval, vmax=maxval)
plt.imsave(os.path.join(os.path.join(args.outdir, "gt"), '%s.png'%(batch_idx)), gt, cmap='magma', vmin=minval, vmax=maxval)
cv2.imwrite(os.path.join(os.path.join(args.outdir, "context"), '%s.png'%(batch_idx)), cv2.cvtColor((255*datablob['im2'].squeeze().permute(1,2,0).detach().cpu().numpy()).astype(np.uint8), cv2.COLOR_RGB2BGR))
cv2.imwrite(os.path.join(os.path.join(args.outdir, "left"), '%s.png'%(batch_idx)), cv2.cvtColor(result['im2_vpp'].squeeze().detach().cpu().numpy().astype(np.uint8), cv2.COLOR_RGB2BGR))
cv2.imwrite(os.path.join(os.path.join(args.outdir, "right"), '%s.png'%(batch_idx)), cv2.cvtColor(result['im3_vpp'].squeeze().detach().cpu().numpy().astype(np.uint8), cv2.COLOR_RGB2BGR))
errormap_img = color_error_image_kitti(errormap, args.errormap_scale, errormap>0, True, args.errormap_dilation)
rect_width = gt.shape[1] // 5
text_scale = 1 / 350 * rect_width
errormap_img_text = add_text_and_rectangle(errormap_img.copy(), f"MAE: {result['mae']:.3f}m", rect_width, text_scale)
cv2.imwrite(os.path.join(os.path.join(args.outdir, "errormap"), '%s.png'%(batch_idx)), errormap_img)
cv2.imwrite(os.path.join(os.path.join(args.outdir, "errormap_text"), '%s.png'%(batch_idx)), errormap_img_text)
for k in result:
if k not in ['disp', 'errormap', 'errormap_text', 'im2_vpp', 'im3_vpp', 'hints', 'fhints', 'gt', 'pred']:
if k not in acc:
acc[k] = []
acc[k].append(result[k])
pbar.update(1)
pbar.close()
acc_list.append(acc)
acc_mean = {}
acc_std = {}
for acc in acc_list:
for k in acc:
if k not in acc_mean:
acc_mean[k] = []
if k not in acc_std:
acc_std[k] = []
acc_mean[k].append(np.array(acc[k]).mean())
acc_std[k].append(np.array(acc[k]).mean())
for k in acc_mean:
acc_mean[k] = np.mean(acc_mean[k])
acc_std[k] = np.std(acc_std[k])
print("MEAN Metrics:")
metrs = ''
for k in acc_mean:
metrs += f" {k.upper()} &"
print(metrs)
metrs = ''
for k in acc_mean:
if 'bad' not in k:
metrs += f" {acc_mean[k]:.3f} &"
else:
metrs += f" {acc_mean[k]*100:.3f} &"
print(metrs)
print("STD Metrics:")
metrs = ''
for k in acc_std:
if 'bad' not in k:
metrs += f" {acc_std[k]:.3f} &"
else:
metrs += f" {acc_std[k]*100:.3f} &"
print(metrs)
if __name__ == '__main__':
main()