-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTCD3.py
175 lines (131 loc) · 6.12 KB
/
TCD3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import copy
import torch
import torch.nn as nn
import torch.nn.functional as F
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Implementation of the Triplet Critic Deep Deterministic Policy Gradient algorithm (TCD3)
# Paper: https://arxiv.org/abs/2109.10736
# Note: This implementation heavily relies on the author's PyTorch implementation of TD3.
# Repository: https://github.com/sfujim/TD3
class Actor(nn.Module):
def __init__(self, state_dim, action_dim, max_action):
super(Actor, self).__init__()
self.l1 = nn.Linear(state_dim, 256)
self.l2 = nn.Linear(256, 256)
self.l3 = nn.Linear(256, action_dim)
self.max_action = max_action
def forward(self, state):
a = F.relu(self.l1(state))
a = F.relu(self.l2(a))
return self.max_action * torch.tanh(self.l3(a))
class Critic(nn.Module):
def __init__(self, state_dim, action_dim):
super(Critic, self).__init__()
# Q1 architecture
self.l1 = nn.Linear(state_dim + action_dim, 256)
self.l2 = nn.Linear(256, 256)
self.l3 = nn.Linear(256, 1)
# Q2 architecture
self.l4 = nn.Linear(state_dim + action_dim, 256)
self.l5 = nn.Linear(256, 256)
self.l6 = nn.Linear(256, 1)
# Q3 architecture
self.l7 = nn.Linear(state_dim + action_dim, 256)
self.l8 = nn.Linear(256, 256)
self.l9 = nn.Linear(256, 1)
def forward(self, state, action):
sa = torch.cat([state, action], 1)
q1 = F.relu(self.l1(sa))
q1 = F.relu(self.l2(q1))
q1 = self.l3(q1)
q2 = F.relu(self.l4(sa))
q2 = F.relu(self.l5(q2))
q2 = self.l6(q2)
q3 = F.relu(self.l7(sa))
q3 = F.relu(self.l8(q3))
q3 = self.l9(q3)
return q1, q2, q3
def Q1(self, state, action):
sa = torch.cat([state, action], 1)
q1 = F.relu(self.l1(sa))
q1 = F.relu(self.l2(q1))
q1 = self.l3(q1)
return q1
class TCD3(object):
def __init__(
self,
state_dim,
action_dim,
max_action,
discount=0.99,
tau=0.005,
policy_noise=0.2,
noise_clip=0.5,
policy_freq=2
):
# Initialize actor networks and optimizer
self.actor = Actor(state_dim, action_dim, max_action).to(device)
self.actor_target = copy.deepcopy(self.actor)
self.actor_optimizer = torch.optim.Adam(self.actor.parameters(), lr=3e-4)
# Initialize critic networks and optimizer
self.critic = Critic(state_dim, action_dim).to(device)
self.critic_target = copy.deepcopy(self.critic)
self.critic_optimizer = torch.optim.Adam(self.critic.parameters(), lr=3e-4)
# Initialize the training parameters
self.max_action = max_action
self.discount = discount
self.tau = tau
self.policy_noise = policy_noise
self.noise_clip = noise_clip
self.policy_freq = policy_freq
self.total_it = 0
def select_action(self, state):
state = torch.FloatTensor(state.reshape(1, -1)).to(device)
return self.actor(state).cpu().data.numpy().flatten()
def update_parameters(self, replay_buffer, batch_size=256):
self.total_it += 1
# Sample from the experience replay buffer
state, action, next_state, reward, not_done = replay_buffer.sample(batch_size)
with torch.no_grad():
# Select action according to the target policy and add target smoothing regularization
noise = (torch.randn_like(action) * self.policy_noise).clamp(-self.noise_clip, self.noise_clip)
next_action = (self.actor_target(next_state) + noise).clamp(-self.max_action, self.max_action)
# Compute the target Q-value by the Triplet Critic Update
target_Q1, target_Q2, target_Q3 = self.critic_target(next_state, next_action)
target_Q = torch.min(torch.max(target_Q1, target_Q2), target_Q3)
target_Q = reward + not_done * self.discount * target_Q
# Get the current Q-value estimates
current_Q1, current_Q2, current_Q3 = self.critic(state, action)
# Compute the critic loss
critic_loss = F.mse_loss(current_Q1, target_Q) + F.mse_loss(current_Q2, target_Q) + F.mse_loss(current_Q3, target_Q)
# Optimize the critic
self.critic_optimizer.zero_grad()
critic_loss.backward()
self.critic_optimizer.step()
# Delayed policy updates, update actor networks every update period
if self.total_it % self.policy_freq == 0:
# Compute the actor loss
actor_loss = -self.critic.Q1(state, self.actor(state)).mean()
# Optimize the actor
self.actor_optimizer.zero_grad()
actor_loss.backward()
self.actor_optimizer.step()
# Soft update the target networks
for param, target_param in zip(self.critic.parameters(), self.critic_target.parameters()):
target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data)
for param, target_param in zip(self.actor.parameters(), self.actor_target.parameters()):
target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data)
# Save the model parameters
def save(self, file_name):
torch.save(self.actor.state_dict(), file_name + "_actor")
torch.save(self.actor_optimizer.state_dict(), file_name + "_actor_optimizer")
torch.save(self.critic.state_dict(), file_name + "_critic")
torch.save(self.critic_optimizer.state_dict(), file_name + "_critic_optimizer")
# Load the model parameters
def load(self, filename):
self.actor.load_state_dict(torch.load(filename + "_actor"))
self.actor_optimizer.load_state_dict(torch.load(filename + "_actor_optimizer"))
self.actor_target = copy.deepcopy(self.actor)
self.critic.load_state_dict(torch.load(filename + "_critic"))
self.critic_optimizer.load_state_dict(torch.load(filename + "_critic_optimizer"))
self.critic_target = copy.deepcopy(self.critic)